

Cloud Computing with the Windows® Azure™ Platform

Introduction . xxi

Part I: Introducing the Windows Azure Platform
Chapter 1: Surveying the Role of Cloud Computing . 3
Chapter 2: Understanding Windows Azure Platform Architecture 19
Chapter 3: Analyzing the Windows Azure Operating System. 49
Chapter 4: Scaling Azure Table and Blob Storage . 63

Part II: Taking Advantage of Cloud Services in the Enterprise
Chapter 5: Minimizing Risk When Moving to Azure Cloud Services 115
Chapter 6: Authenticating and Authorizing Service Users 151
Chapter 7: Optimizing the Scalability and Performance of Azure Tables 187
Chapter 8: Messaging with Azure Queues . 209

Part III: Tackling Advanced Azure Services Techniques
Chapter 9: Authenticating Users with .NET Access Control Services 239
Chapter 10: Interconnecting Services with the .NET Service Bus. 273
Chapter 11: Exploring .NET Service Bus Queues and Routers 295

Part IV: Working with SQL Azure Services (Online Only)
Chapter 12: Managing SQL Azure Accounts, Databases, and DataHubs
Chapter 13: Exploiting SQL Azure Database’s Relational Features

Index . 313

Cloud Computing with the
Windows® Azure™ Platform

Cloud Computing with the
Windows® Azure™ Platform

Roger Jennings

Wiley Publishing, Inc.

Cloud Computing with the Windows® Azure™ Platform
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

ISBN: 978-0-470-50638-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought.
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Web site is referred to in this work as a citation and/or a potential source of further information does not mean that
the author or the publisher endorses the information the organization or Web site may provide or recommendations
it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2009933376

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. Microsoft and Azure are trademarks or registered
trademarks of Microsoft Corporation in the United States and/or other countries. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned
in this book.

This book is dedicated to my wife, Alexandra.
Looking forward to our twenty-fifth wedding anniversary.

About the Author

Roger Jennings is an author and consultant specializing in Microsoft .NET
n-tier database applications and data-intensive Windows Communication
Foundation (WCF) Web services with SQL Server. He’s been a beta tester
for most versions of Visual Basic, starting with the Professional Extensions
for Visual Basic 2.0 (code-named Rawhide), SQL Server since version 4.21,
and all versions of Visual Studio.

More than 1.25 million English copies of Roger’s 26 computer-
related books are in print, and they have been translated into more than

20 languages. He’s the author of Professional ADO.NET 3.5 with LINQ and the Entity Framework and
Expert One-on-One Visual Basic 2005 Database Programming for Wiley/Wrox, three editions of Database
Developer’s Guide to Visual Basic (SAMS Publishing), two editions of Access Developer’s Guide (SAMS),
11 editions of Special Edition Using Microsoft Access (QUE Publishing), and two editions of Special Edition
Using Windows NT 4.0 Server (QUE). He’s also written developer-oriented books about Windows 3.1
multimedia, Windows 95, and Windows 2000 Server for QUE; Active Directory Group Policy and Visual
Basic web services for Osborne McGraw-Hill; and Microsoft Office InfoPath 2003 SP-1 for Microsoft
Press. Roger has been a contributing editor of Redmond Media Group’s Visual Studio Magazine and its
predecessor, Fawcette Technical Publications’ Visual Basic Programmer’s Journal, for more than 15 years.
His articles also appear in Redmond Magazine and he writes ‘‘TechBriefs’’ and cover stories for Redmond
Developer News.

Roger has more than 30 years of computer-related experience, beginning with real-time medical
data acquisition and chemical process control systems driven by Wang 700 calculators and later Wang
BASIC microcomputers. He’s the principal developer for OakLeaf Systems, a Northern California
software consulting firm and author of the OakLeaf Systems blog (http://oakleafblog.blogspot.com).
His OakLeaf Code of Federal Regulations (CFR) ASP.NET Web service demonstration won the
charter Microsoft .NET Best Award for Horizontal Solutions (http://bit.ly/Balng, www.microsoft
.com/presspass/features/2002/aug02/08-07netwinners.mspx).

Credits
Executive Editor
Bob Elliott

Project Editor
Adaobi Obi Tulton

Technical Editors
Mike Amundsen
David Robinson

Production Editor
Daniel Scribner

Copy Editor
Paula Lowell

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Nancy C. Hanger, Windhaven

Indexer
Robert Swanson

Cover Image
© Jupiter Images/Digital Vision

Acknowledgments

Many thanks to technical editors Dave Robinson and Mike Amundsen for corrections and suggestions
as the chapters passed through numerous Community Technical Previews and SQL Azure Database’s
mid-course correction.

David Robinson is a Senior Program Manager on the SQL Azure Database (SADB) team. David is
responsible for a multitude of things including driving product features, code samples, and most
importantly demonstrating to customers the value that SADB and cloud computing provides. David
enjoys getting out in the community, presenting on SADB, gathering feedback, and helping to ensure
SADB meets whatever demands you throw at it. David has also written for MSDN magazine on
developing solutions against SADB. Before joining the SADB team, David was a Solutions Architect
on Microsoft’s Health and Life Sciences team. Before joining Microsoft, David held various senior
positions with a variety of software and consulting companies. David got his start as a developer
at Computer Associates in the early ‘90s. When not working, David enjoys spending time with
his wife and helping her corral their four young daughters. David blogs at http://bit.ly/qIT1S,
http://blogs.msdn.com/drobinson/default.aspx.

Mike Amundsen is an internationally known author and lecturer who travels throughout the United
States and Europe speaking about and teaching a wide range of topics including .NET, the Internet, team
development, and other subjects. He has more than a dozen books to his credit; his most popular titles are
Teach Yourself Database Programming with Visual Basic in 21 Days, Using Visual InterDev, and ASP.NET for
Developers. When he’s not traveling, Mike spends his time with his wife and three children at their home
in Kentucky. Mike and Subbu Allamaraju are writing the RESTful Web Services Cookbook to be published
by O’Reilly Media at the end of 2009. Mike’s mca blog is at www.amundsen.com/blog/.

Wrox Executive Editor Bob Elliott convinced me to start writing .NET developer books for Wiley/Wrox.
Adaobi Obi Tulton, project editor for this and my two earlier Wiley/Wrox titles, made sure that chapters
didn’t slip too far behind the schedule required to deliver this book before the official announce-
ment of the Windows Azure Platform’s release to the Web at Microsoft’s Professional Developers
Conference 2009.

Contents

Introduction xxi

Part I: Introducing the Windows Azure Platform

Chapter 1: Surveying the Role of Cloud Computing 3

Why Migrate Applications and Services to the Cloud? 7
Cloud Computing’s Ancestry 7

Diskless Workstations and Thin Clients 7
Web TV and Its Clones or Descendants 8
Netbook Clients 9
Application Service Providers and Software as a Service 10
Web Hosting Services 10

Cloud Computing and Everything as a Service 11
Cloud Computing Ontologies 14
Cloud Computing Concerns 16
Summary 18

Chapter 2: Understanding Windows Azure Platform Architecture 19

The Windows Azure Developer Portal 21
Creating and Running Projects in the Azure Development Platform 23

Installing Windows Azure SDK and Tools for Visual Studio 24
Installing and Building the Windows Azure SDK Sample Applications 24
The Development Fabric 25
Development Storage 27

Using Azure Application Templates for Visual Studio 2008 35
Web Cloud Services and Client Wrapper Class Libraries 37

Taking Advantage of Auxiliary Cloud Services 38
.NET Services 38
.SQL Services 40

Deploying Applications and Services to the Azure Cloud 42
Azure Storage Services 42
Publishing Projects to the Azure Services Developer Portal 42
Publishing the Project to the Cloud Fabric 44

Summary 47

Contents

Chapter 3: Analyzing the Windows Azure Operating System 49

A Quick Tour of the Windows Azure OS 49
The Lifecycle of a Windows Azure Service 51

Creating the Host VM and the First Guest VM on a Physical Server 53
Adding Guest VMs to a Host VM 53
Maintaining Role Instance Health 53
Upgrading Service Software and Windows Azure 54

Securing and Isolating Services and Data 54
Reliance on Cloud-Computing Vendors’ Security Claims 55
Isolating Private Data of Multiple Tenants 56

Assuring Fabric Controller Availability 57
Virtualizing Windows Servers for Azure 58

Deploying the Azure Hypervisor in Non-Microsoft Data Centers 59
Summary 60

Chapter 4: Scaling Azure Table and Blob Storage 63

Creating Storage Accounts 64
Create the First Storage Account with a Hosted Service Token 64
Create an Additional Storage Account with a Hosted Service Token 66

Using or Wrapping the Azure Storage Services’ REST APIs 67
Using Fiddler2 to Display HTTP Request and Response Headers and Content 68
C# Wrappers for RESTful Storage and Authentication Operations 70

Understanding Azure Table Storage 72
Creating a New Table If the Table Doesn’t Exist with Code 72
Creating a New Table If the Table Doesn’t Exist with the HTTP POST Method 79
Adding Entities to a Table 80
Querying for a Specific Entity or Entities 85
Updating Entities by Replacing Their Property Values 90
Deleting Entities 93

Storing and Retrieving Blobs 94
Blob Content Types 95
The StorageClient Class Library’s Blob Storage and REST Blob Storage Classes 97
Obtaining a File from Windows Live SkyDrive and Uploading It to Azure Blob Storage with

Code 97
Downloading a Blob File from SkyDrive with the HTTP GET Method 104
Uploading a Blob to Azure Storage Services in 1MB Blocks 106
Downloading a Selected Blob 106
Deleting a Specified Blob 108
Taking Advantage of New Copy Blob and Get Blob List Methods 109
Late Changes to Azure Blobs 110

Summary 111

xvi

Contents

Part II: Taking Advantage of Cloud Services in the Enterprise

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services 115

Bypassing Barriers to Cloud Computing 116
Maximizing Data Availability and Minimizing Security Risks 117
An IT-Related Risk Definition 117
NIST’s Idea for Federal Cloud Computing Standards 118
Potential Cloud Computing Deployment by the Department of Defense 119
Gaining and Auditing Regulatory Compliance 119

Implementing Secure Sockets Layer Transmission Encryption for Web Roles 127
Enabling TLS for Azure Data Services 130
Creating a Self-Signed Certificate for the Development Fabric 131
Exporting and Importing the Issuer to the Trusted Root Certificate Authorities List 132
Creating a Test Root Certificate Authority and Using It to Sign a Test Certificate 134

Encrypting Personal Information in Azure Storage Services 135
Encrypting and Decrypting Strings with AES 136

Auditing Conformance to Regulatory and Industry Standards 147
Statement on Auditing Standards No. 70 (SAS 70) 148
The ISO/IEC 27001:2005 Standard 148
Azure’s SAS 70 and ISO/IEC 27001:2005 Audits and Certifications 149
Service-Level Agreements and Business Interruption Risk 149

Summary 149

Chapter 6: Authenticating and Authorizing Service Users 151

Taking Advantage of ASP.NET Membership Services 151
ASP.NET Login Controls 152
User Role and Profile Management 152

Adapting ASP.NET Authentication and Role Management to Windows Azure Web
Roles 153
Running the Windows Azure SDK’s AspProvidersDemo Service Locally 153
Working with the AspProvidersDemoDB Database 157
Exploring Azure-Specific Membership Elements and Attributes in the Web.config File 158

Analyzing the AspProviders Library’s Classes 161
The TableStorageMembershipProvider Class 161
The TableStorageRoleProvider Class 162
The TableStorageProfileProvider Class 164
The TableStorageSessionProvider Class 165

Moving the AspProvidersDemo’s Data Source to the Cloud 169
Integrating Membership Services with an Azure Service 170

Copying and Integrating Membership-Related Files 170
Customizing the AzureTableTestHarness Project’s Default.aspx Page 171

xvii

Contents

Authenticating Users with Windows Live ID 175
Downloading and Installing the WLID Web Authentication SDK 1.2 175
Installing the Windows Live Tools for Visual Studio 177
Creating and Testing the Initial LiveIDSampleCloudService 181

Summary 186

Chapter 7: Optimizing the Scalability and Performance of Azure Tables 187

Assigning Primary Key Values to Entities 187
Choosing Partition Keys 188
Adding Row Keys 190

Handling Associated Entities 190
Taking Advantage of Entity Group Transactions 193
Uploading Table Data 194

Comparing Code for Uploading Data to Individual or Heterogeneous Tables 197
Comparing Performance of Homogeneous and Heterogeneous Table Operations 201

Displaying Data from Heterogeneous Tables in Grids 205
Displaying Parent Entities 205
Displaying Child Entities 207

Summary 208

Chapter 8: Messaging with Azure Queues 209

Creating and Processing Azure Queues and Messages 210
Listing a Storage Account’s Queues 211
Issuing HTTP/REST Requests at the Queue Level 212
Working with HTTP/REST at the Message Level 215

Enhancing the Thumbnails.sln Sample Solution 221
Understanding the Interaction Between WebRoles and WorkerRoles 222
Analyzing Network Traffic Implications of Polling for Blob Updates 225
Moving to Client-Side Detection of Added Thumbnail Images 229
Enabling Thumbnail Deletion 231

Summary 234

Part III: Tackling Advanced Azure Services Techniques

Chapter 9: Authenticating Users with .NET Access Control Services 239

Creating a .NET Services Solution 240
Installing the .NET Services SDK, and Other Tools 242
Creating CardSpace Credentials at FederatedIdentity.net 244

Exploring the HTTP Request and Response Messages of the CardSpace Information Card 249
Standardizing Information Card Terminology 257

xviii

Contents

Using a Managed CardSpace Credential with ACS 259
Setting Up FederatedIdentity.net for Use with the oakleaf-acs Solution 260
Verifying the Managed CardSpace Card(s) with the EchoService 266

Summary 271

Chapter 10: Interconnecting Services with the .NET Service Bus 273

Creating a .NET Services Solution and Installing Prerequisites 274
Relaying Messages with SB 275
Analyzing the .NET Services SDK’s EchoSample Solution 276

Inspecting the Service Project’s EchoContract.cs, EchoService.cs, and Program.cs Files 276
Verifying the Service User’s Credentials with Code in Program.cs 278
Consuming the EchoSample Solution’s Service 282
Making Services Publicly Discoverable 283

Using the Configuration File to Specify WSHttpRelayBinding 285
Associating a Self-Issued Card Space Identity Card with the Current Solution 288
Correcting the Autogenerated Scope for the Solution 290
Specifying Binding Details in App.config 293

Summary 294

Chapter 11: Exploring .NET Service Bus Queues and Routers 295

Persisting Messages in Service Bus Queues 296
Creating SBQs with the QueueManagementClient Class 296
Test-Driving the HttpQueueSample Solution 300
Spelunking the HttpQueueSample Solution’s Code 302

Delivering Messages with Service Bus Routers 306
Summary 311

Part IV: Working with SQL Azure Services (Online Only)

Chapter 12: Managing SQL Azure Accounts, Databases, and DataHubs

Chapter 13: Exploiting SQL Azure Database’s Relational Features

Index 313

xix

I n t roduc t ion

Cloud computing became a hot topic in mid-2008 and, by mid-2009, had achieved top buzzword status.
As proof of its popularity, a mid-August 2009 search on Bing.com for ‘‘cloud computing’’ returned
92 million hits. Hardly a week goes by that doesn’t include at least one cloud computing conference
somewhere around the globe. Mainstream business magazines, such as Forbes and Business Week,
regularly run cloud-computing feature articles and comprehensive special reports, such as Business
Week’s ‘‘Cloud Computing’s Big Bang for Business’’ of June 5, 2009, which presented case studies of
cloud usage by Serena Software, Optum Health, Genentech, Coca-Cola Enterprises, and Info Tech
(http://bit.ly/uecfb, www.businessweek.com/magazine/toc/09_24/B4135cloud_computing.htm).
Earlier that week, Microsoft CEO Ray Ozzie addressed Silicon Valley’s Churchill Club on ‘‘The
Potential of Cloud Computing’’ (http://bit.ly/g2wqn, www.churchillclub.org/eventDetail.jsp?
EVT_ID=820). TechCrunchIT’s Leena Rao quoted Ozzie in a June 4, 2009 post (http://bit.ly/1h01j,
www.techcrunchit.com/2009/06/04/liveblogging-microsofts-ray-ozzie-on-the-potential-of-
cloud-computing):

In essence, the nature of Windows Azure . . . will enable people to wrap existing
Windows Server workloads in a way with as little change as possible to move up in
a public or private cloud environment. It’s laying out program design patterns and
infrastructure — this is what an idea[l] cloud computing structure looks like, this is
how you build a program with the elastic ability to scale, etc

When asked by moderator Steven Levy, ‘‘How many companies can build big clouds?’’ Ozzie replied:

Not too many. I don’t know about Amazon. They are the leader. They have done
amazing work. But the level of [Windows] Server enterprise deployments is substan-
tial. We have so many companies who are using Exchange and SharePoint who want
to get into this infrastructure . . . it’s a big investment.

Amazon Web Services is today’s ‘‘800-pound gorilla’’ of cloud computing, having been in the Infras-
tructure as a Service (IaaS) market for three years with its Elastic Computing Cloud (EC2), announced in
November 2006, and Simple Storage Services (S3), which started operation in March 2006. Google was
one of the first players in the Platform as a Service (PaaS) business with the Python-powered Google App
Engine (GAE), which now supports Java as a programming language. GAE started with a limit of 10,000
developers in early April 2008 and opened to all comers in May 28, 2008. The poster-child of Software as
a Service (SaaS), Salesforce.com, Inc., had 55,400 customer-relationship management (CRM) customers
and more than 1.5 million subscribers in mid-2009, according to Wikipedia. Verizon was one of the first
telecom firms to announce entry into cloud-based Computing as a Service (CaaS) business in June 2009.
Sun Microsystems, which was in the process of being acquired by Oracle when this book was written,
and IBM are potential PaaS competitors to Windows Azure.

Introduction

Ozzie responded to Levy’s question, ‘‘What’s your competitive edge when it comes to cloud computing
over other tech companies?’’ with the following list:

1. Technology: Microsoft Research has been doing tremendous things.

2. Operating systems.

3. Storage investments because of search.

4. Developer edge: Five to seven million developers working on the Microsoft stack. It’s a great
market opportunity. If we can prove to them that we have a great infrastructure for their
software, they will deploy it. There’s also opportunity with partners — there are going to be
lots of opportunity for partners, like hardware partners to make money.

5. Enterprise: Exchange and SharePoint are great ways to save money.

This book concentrates on item 4 of the preceding list. Microsoft’s competitive edge in cloud computing
hinges on its capability to leverage the skills of cadres of .NET architects and developers who use
Visual Studio (VS) 2008 and 2010 to move on-premises applications and services to Azure WebRoles,
WorkerRoles, and .NET Services. Publishing to hosted staging in the Azure cloud from VS’s Solution
Explorer requires only a few mouse clicks. Moving from staging to production deployment is a single-
click operation that automatically creates two data replicas for high availability. Provisioning additional
service instances during traffic surges and retiring them when usage subsides also is automatic.

SQL Server DBAs and database architects can take advantage of their Transact-SQL chops with SQL
Azure Database (SADB), Microsoft Synchronization Framework, and the newly christened Data Hub
(formerly codenamed Project Huron). Data Hub syncs database schemas and table rows between
on-premises, mobile, and Azure databases. SQL Server Management Studio on your development
machine can connect to an SQL Server database simply by changing the server’s DNS name in the
logon dialog. Managing SADB runs T-SQL on the SQL Server’s traditional Transport Data Stream (TDS)
protocol on TCP port 1433 with the .NET SqlClient class. Alternatively, ADO.NET Data Services
(formerly Project Astoria) provides RESTful access to SADB data with HTTP[S].

Cloud Computing with the Windows Azure Platform’s early chapters briefly discuss the business justifica-
tion for moving many IT operations to the cloud and deal with thorny cloud security issues. However,
the book concentrates on hands-on programming of Windows Azure Storage services — tables, blobs,
and queues — and web applications (WebRoles and WorkerRoles), as well as .NET Services, including
Access Control Services, Service Bus queues and routers, and Workflows. The Azure team decided late
in the game to move from SQL Server Azure Database’s Authority-Container-Entity (ACE) data model
to SADB’s fully relational Account-Server-Database model and didn’t release the first SADB Community
Technical Preview (CTP) until after this book’s printing deadline. Therefore, the book’s last two chapters
about managing and programming SADB and Data Hub are downloadable, along with the sample source
code, from the Wrox web site at www.wrox.com. The Azure team removed Workflow Services from the
.NET Services feature set starting with the .NET Services July 2009 CTP because .NET Framework 4 will
ship with a substantially improved workflow engine. Workflow Services will be reinstated after the final
release of .NET 4.

Who This Book Is For
.NET developers, software architects, and development managers are the primary audience for this book,
but IT executives and managers are likely to find the detailed information about auditing governance and

xxii

Introduction

security for Windows Azure services useful. For example Chapter 5, ‘‘Minimizing Risk When Moving to
Azure Cloud Services,’’ observes the need for cloud governance and security audits, and then goes on
to describe the Statement of Auditing Standards (SAS) 70 Type I and Type II attestations and ISO/IEC
27001:2005 certifications received by Microsoft’s data centers in mid-2009.

Microsoft was the first major PaaS cloud service provider to obtain both SAS 70 Type I and Type II
attestations and ISO/IEC 27001:2005 certifications for its data centers.

What This Book Covers
Cloud Computing with the Windows Azure Platform covers server-side and client-side programming with
Visual Studio 2008, the .NET Framework 3.5, Windows Azure Software Development Kit (SDK), .NET
Services SDK, SQL Azure SDK, and ADO.NET Data Services using the local Azure Development Fabric,
where applicable, and the Azure Production Fabric for the cloud. Sample programs illustrate data storage
and retrieval with Azure blobs, tables, and queues; authenticating and authorizing users with ASP.NET
membership and Azure Access Control Services; interconnecting services and clients with the Service Bus
and its queues and routers; and implanting workflows with .NET Services and VS’s graphical Workflow
Designer. Most of the sample code uses the sample StorageClient library to simplify programming with
traditional .NET objects rather than raw HTTP requests and responses.

When this book was written, .NET 4 and VS 2010 were in the Beta testing stage and the Azure Fabric
did not support projects that required .NET 4 features. There is no significant difference when using
VS 2010 and 2008 to author or deploy Azure projects or services.

How This Book Is Structured
This book is divided into four parts with two to five chapters. Most chapters build on the knowledge
you’ve gained from preceding chapters. Thus, it’s recommended that you work your way through the
chapters sequentially. Following is a brief description of each part and its chapters’ contents.

Part I: Introducing the Windows Azure Platform
Part I is devoted to generic cloud computing topics, the Windows Azure infrastructure, and Azure
Storage Services.

❑ Chapter 1, ‘‘Surveying the Role of Cloud Computing,’’ starts with definitions of cloud
computing and its estimated market size, discusses reasons for migrating applications and
services to the cloud, outlines the history of cloud computing and its ancestors, such as Oracle’s
Network Computer, and then goes on to describe various *aaS variations, such as Data storage
as a Service (DaaS), Software as a Service (SaaS), and Microsoft’s Software + Services, as well as
cloud computing ontologies. The chapter closes with details about the National Institute for
Standards and Technology (NIST)’s ‘‘Draft NIST Working Definition of Cloud Computing v13’’
and ‘‘Presentation on Effectively and Securely Using the Cloud Computing Paradigm v22’’
(http://bit.ly/KQ2ZZ, http://csrc.nist.gov/groups/SNS/cloud-computing/index.html)
publications.

❑ Chapter 2, ‘‘Understanding Windows Azure Platform Architecture’’ begins with a description
of the Windows Azure Platform’s components, the Azure Development Portal for managing
hosted applications and services, and the Azure Development Platform, which implements the

xxiii

Introduction

Developer Fabric and Developer Storage to emulate the cloud-based services on developers’
computers. A tour of the Windows Azure SDK and templates added to VS 2008 by Windows
Azure Tools for Visual Studio follows, and the chapter continues with details about .NET Ser-
vices, the Service Bus, Workflow services, and deploying solutions to the Azure cloud.

❑ Chapter 3, ‘‘Analyzing the Windows Azure Operating System,’’ digs into the Azure Fabric
Controller, which handles application/service deployment, load balancing, OS/data replication,
and resource management. It then goes on to describe the relationships between physical
nodes and logical roles, and the services they host, as well as how the host and guest virtual
machine (VMs) are created for a new production project. A discussion of the roles of upgrade
domains, which support rolling service software updates and patches to the Windows Azure
operating system, and fault domains for high-availability services, as well as how the fabric
maintains tenant privacy in a multitenancy environment follows. The chapter closes with details
of virtualizing Windows Server for use by Azure.

❑ Chapter 4, ‘‘Scaling Azure Table and Blob Storage’’ explains how to create Azure storage
accounts, describes how to use the Fiddler2 web debugger proxy to view HTTP request and
response messages, analyzes how the sample C# StorageClient library simplifies storage
programming, and then goes into detailed programming techniques for using Azure tables
and blobs as data sources for WebRoles. The source code contains sample C# solutions for
tables (oakleaf.cloudapp.net) and blobs (oakleaf2.cloudapp.net) that are deployed to
the cloud.

Part II: Taking Advantage of Cloud Services
in the Enterprise

Part II shows you how to overcome enterprise-scale business issues with transport and store data
encryption, basic cloud authentication and authorization techniques, improving the scalability of and
enabling transactions for Azure tables, and processing compute operations in parallel with Azure queues
and WorkerRoles.

❑ Chapter 5, ‘‘Minimizing Risk When Moving to Azure Cloud Services,’’ starts by discussing
the ‘‘Top 10 Obstacles to and Opportunities for Growth of Cloud Computing’’ from the
University of California Berkeley’s ‘‘Above the Clouds: A Berkeley View of Cloud Computing’’
whitepaper, service-level agreements (SLAs), and NIST’s definition of IT-related risk, as well
as federal agency plans for deploying cloud services. An analysis of regulations, such as the
Gramm-Leach-Bliley (GLB) Act, Sarbanes-Oxley Act (SOX), Health Insurance Portability and
Accountability Act (HIPAA), and the Foreign Corrupt Practices Act, as well as the Payment
Card Industry-Data Security Standard (PCC-DSS), which requires auditing, follows. Code
for implementing Secure Sockets Layer (SSL) transmission encryption for WebRoles, TLS for
Azure Data Services, and encrypting personal information in Azure Storage Services follows.
The chapter concludes with sections about auditing conformance to regulatory and industry
standards.

❑ Chapter 6, ‘‘Authenticating and Authorizing Service Users,’’ shows you how to adapt
ASP.NET authentication and role management to Azure WebRoles with the AspProviders
class library and the TableStorageMembershipProvider, TableStorageRoleProvider,
TableStorageProfileProvider, and TableStorageSessionProvider classes. The chapter ends
with the details for integrating ASP.NET Membership services with an Azure service.

xxiv

Introduction

❑ Chapter 7, ‘‘Optimizing the Scalability and Performance of Azure Tables,’’ describes how to
choose the optimum combination of PartitionKey and RowKey values, which correspond to a
relational table’s composite primary key; handle associated (child or parent) entities; and take
advantage of Entity Group Transactions, which the Azure team introduced in the Windows
Azure May 2009 CTP. An example for using ADO.NET Data Services to upload homogeneous
(parent or child entities) and heterogeneous (parent and child entities) tables with a comparison
of performance follows. The chapter closes with code to display heterogeneous entities in linked
parent/child ASP.NET DataGrid controls.

❑ Chapter 8, ‘‘Messaging with Azure Queues,’’ explains the benefits of offloading comput-
ing services to one or more WorkerRoles and describes how to create and process Azure
queues using the QueueStorage, MessageQueue, QueueProperties, and Message classes and
the MessageReceivedEventHandler delegate. The chapter also describes how to enhance the
Thumbnails.sln sample solution and minimize network traffic when polling for blob updates.
The final Photo Gallery Azure Queue Test Harness sample project at oakleaf5.cloudapp.net/
includes a GridView of image blobs added by a queue from local graphics files.

Part III: Tackling Advanced Azure Service Techniques
Part III introduces programming .NET Services members — Access Control Services (ACS), .NET Service
Bus (SB), and Workflow services (WF) — with the Microsoft .NET Services SDK.

❑ Chapter 9, ‘‘Authenticating Users with .NET Access Control Services,’’ describes ACS as a
security token service infrastructure hosted in Windows Azure that authenticates credentials
and issues tokens. The chapter shows you how to provision and create a .NET Services
solution, use Microsoft’s FederatedIdentity.net web site to create federated Information Card
credentials, use Geneva Server beta 2 to create Information Cards for your own organization,
and use CardSpace Information Cards for user authentication and authorization with ACS.

❑ Chapter 10, ‘‘Interconnecting Services with the .NET Service Bus,’’ explains how to use the SB
and its various messaging patterns for traversing firewalls and Network Address Translation
(NAT) devices while interconnecting Windows Azure and other applications via the Internet.
Programming topics include relaying messages with SB, making services publicly discoverable
by an Atom feed, and using the configuration file to specify WSHttpRelayBinding.

❑ Chapter 11, ‘‘Exploring .NET [Workflow Services and] Service Bus Queues and Routers,’’
explains persisting messages in Service Bus queues (SBQs) with the QueueManagementClient
class and delivering messages with Service Bus routers (SBR)s. The online version of this
chapter, which will come after the release of .NET 4, will use the CheckScoreWorkflow.sln
sample project to introduce WF cloud application architecture and the .NET Service Portal’s
Workflow Management pages.

Part IV: Working with SQL Azure Services (Online Only)
The Microsoft SQL Server team announced its intention to replace its original SQL Server Data Services
(SSDS) implementation of a schemaless Entity-Attribute-Value (EAV) data model with fully relational
SQL Data Services (SDS), also known as, ‘‘SQL Server in the Cloud,’’ and introduced SDS with an
invitation-only CTP in July 2009. The SDS team changed SDS’s name to SQL Azure Database in early
July 2009. The first (August 2009) SADB CTP was too late to include in the first printing of this book,

xxv

Introduction

so Part IV’s chapters will be available for download from the same location as the source code and
Workflow, the book’s pages on the Wrox web site (www.wrox.com).

See the later ‘‘Source Code and Online Chapters’’ section for details about downloading the sample source
code and these chapters.

❑ Chapter 12: ‘‘Managing SQL Azure Accounts, Databases, and Data Hubs’’

❑ Chapter 13: ‘‘Exploiting SQL Azure Database’s Relational Features’’

Conventions
To help you get the most from the text and keep track of what’s happening, Wrox uses a number of
conventions throughout the book.

Notes, tips, hints, tricks, and asides to the current discussion are placed in italics like this.

As for styles in the text:

❑ New terms and important words are highlighted when introducing them.

❑ Keyboard strokes look like this: Ctrl+A.

❑ URIs and code within the text appear like so: persistence.properties.

❑ Long URLs are shortened by http://bit.ly to URIs like http://bit.ly/sJbNe to minimize
typing and are followed by the item’s original URI for use in the event of a mismatch.

❑ Replaceable values in code are italicized: tableName.entityName.

❑ Code is presented in two different ways:

A monospace font with no highlighting works for most code examples.
Gray highlighting emphasizes code that’s particularly important in the present
context.

Source Code and Online Chapters
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All the source code used in this book is available
for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book’s detail page to obtain
all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978–0–470–50638–7.

After you download the code, just decompress it with your favorite archiving tool. Alternatively, you can
go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see the
code available for this book and all other Wrox books. The online version of Chapter 11, and Chapters 12
and 13 can also be downloaded from the web site using the same method.

xxvi

Introduction

Errata
We make every effort to ensure that no errors are in the text or in the code. However, no one is perfect,
and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty piece of
code, we would be very grateful for your feedback. By sending in errata you may save another reader
hours of frustration and at the same time you will be helping us provide even higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view all
errata that have been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

P2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At p2p.wrox.com you will find a number of different forums that will help you not only as you read this
book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you want to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxvii

Part I

Introducing the Windows Azure
Platform

Chapter 1: Surveying the Role of Cloud Computing

Chapter 2: Understanding Windows Azure Platform Architecture

Chapter 3: Analyzing the Windows Azure Operating System

Chapter 4: Scaling Azure Table and Blob Storage

Surveying the Role
of Cloud Computing

The term cloud computing implies access to remote computing services offered by third parties via a
TCP/IP connection to the public Internet. The cloud symbol in a network diagram, which initially
represented any type of multiuser network, came to be associated specifically with the public Inter-
net in the mid-1990s. As an example, the following is the first paragraph of Wikipedia’s definition
of cloud computing as of mid-January 2009:

Cloud computing is Internet (‘‘cloud’’)-based development and use of computer tech-
nology (‘‘computing’’). It is a style of computing in which resources are provided ‘‘as
a service’’ over the Internet to users who need not have knowledge of, expertise in, or
control over the technology infrastructure (‘‘in the cloud’’) that supports them.

Gartner defines cloud computing as

Scalable, IT-related capabilities provided as a service on the Internet.

The preceding definitions encompass almost all common Internet-based activities, ranging from
individuals sending e-mail messages and viewing Web pages to retailers processing credit and debit
card charges for online purchases. Google CEO Eric Schmidt narrowed the definition a bit in an
August 9, 2006 interview by Danny Sullivan at the Search Engine Strategies Conference (transcribed
at http://bit.ly/wday4, www.google.com/press/podium/ses2006.html):

What’s interesting [now] is that there is an emergent new model, and you all are here
because you are part of that new model. I don’t think people have really understood
how big this opportunity really is. It starts with the premise that the data services and
architecture should be on servers. We call it cloud computing — they should be in a
‘‘cloud’’ somewhere. And that if you have the right kind of browser or the right kind
of access, it doesn’t matter whether you have a PC or a Mac or a mobile phone or a
BlackBerry or what have you — or new devices still to be developed — you can get

Part I: Introducing the Windows Azure Platform

access to the cloud. There are a number of companies that have benefited from that.
Obviously, Google, Yahoo!, eBay, Amazon come to mind. The computation and the
data and so forth are in the servers. [Emphasis added.]

Mr. Schmidt is considered by many to be the first user of the term cloud computing in the context of its
embodiment in 2008 and later, but the term didn’t reach the threshold for inclusion in Google’s Trends
service until about September 2007 (see Figure 1-1). Mr. Schmidt makes the assumption in the preceding
quotation that data services provided by the cloud-computing servers were defined by the organizations
that owned the servers, specifically Google, Yahoo!, eBay, and Amazon.

Figure 1-1: Worldwide traffic for the terms cloud computing, Windows Azure, Amazon EC2, and Google App
Engine for the years 2000 through 2008 as reported by the Google Trends service.

4

Chapter 1: Surveying the Role of Cloud Computing

Amazon released its Elastic Compute Cloud (EC2) web service, which was the first service to permit
users to run their own custom programs — rather than host web sites only — in the Internet cloud, on
August 23, 2006, just two weeks after the Schmidt interview.

IDC, a well-regarded technology market analysis firm, forecasted in late October 2008 that IT spending on
cloud services will grow by a factor of almost three and reach $42 billion by 2012, at which time it would
account for about nine percent of total software sales. IDC expects that spending on cloud computing
will accelerate during the forecast period, ending up by capturing 25 percent of IT spending growth in
2012 and gaining nearly a third of that growth the following year.

Cloud Computing with the Windows Azure Platform covers the enterprise-oriented cloud computing services
offered by Windows Azure Platform as illustrated by the logo of Figure 1-2, which introduced Azure-
related technical sessions at the Professional Developers Conference (PDC) 2008, held in Los Angeles
October 27–30, 2008. Microsoft released the first Community Technical Preview (CTP) of Azure, formerly
known as ‘‘Project RedDog’’ and occasionally called ‘‘Stratus,’’ at PDC 2008.

Figure 1-2: The Windows Azure Platform was called the Azure
Services Platform until July 2009.

Specifically, this book covers

❑ Windows Azure, the operating system which implements the Windows Azure Fabric’s production
version in virtualized Windows Server 2008 clusters.

❑ Azure Storage Services, which provides scalable persistent storage of structured tables, arbitrary
blobs, and queues.

❑ SQL Services: SQL Azure Database implements Microsoft SQL Server in the cloud with features
commonly offered by enterprise-scale relational database management systems. SQL Reporting
and SQL Analysis services are expected as future data-related SQL Services.

❑ .NET Services: Access Control, Service Bus, and Workflow services, as well as Server Bus Queues
and Routers.

❑ Windows Azure Software Development Kit (SDK), which implements the Azure Development fabric
and Azure Storage Services on local development PCs.

❑ Windows Azure Tools for Microsoft Visual Studio, which provide Visual Studio 2008 and 2010
project templates and other support for developing applications that run on the Windows Azure
Development and Production fabrics.

5

Part I: Introducing the Windows Azure Platform

The book does not cover the Live Operating Environment (LOE, formerly Mesh Operating Environment,
MOE) and its Live Services because these are consumer-oriented features. Nor does it dig into Microsoft
SharePoint Services, Microsoft Dynamics CRM Services, or Office Business Applications (OBAs) because
they are Microsoft proprietary applications that have been modified to run on the Azure Production
Fabric and use Azure Storage Services to persist state. This book’s content is directed to the Azure services
that are not crossed out in Figure 1-3.

Windows Azure Platform

Development Fabric

Development Storage
Table Services
Blob Services

Queue Services

Development Runtime

Azure (Cloud) Fabric

Azure Storage Services
Table Services
Blob Services

Queue Services

Azure Runtime

SQL Services
SQL Azure Database (SADB)

SQL Analysis Services*
SQL Report Services*

.NET Services
Access Control

Service Bus
Queues
Routers

Workflow

Live Services

Users
Devices

Applications
Synchronization

Identity
Directory
Storage

Communication
Presence
Search

GeospatialLive Operating
Environment

Cloud Services

Vista SP1, VS 2008

Applications

Web Cloud
Service

Worker Cloud
Service

Web and Worker
Service

Workflow
Service Windows Azure OS

Figure 1-3: Enterprise-oriented Windows Azure Platform and SDK
features. Features not covered in this book are crossed out.

This book was written with the fourth (May 2009) and later CTPs of the Windows Azure SDK and Win-
dows Azure Tools for Microsoft Visual Studio.

Chapter 2, ‘‘Understanding Windows Azure Platform Architecture’’ and the remaining chapters of Part
I, ‘‘Introducing the Windows Azure Platform,’’ describe the underlying architecture and implementation
of Windows Azure and its repertoire of enterprise-oriented features.

6

Chapter 1: Surveying the Role of Cloud Computing

Why Migrate Applications and Services
to the Cloud?

Cloud computing is receiving massive press coverage, generating an unending series of conferences,
increasing IT management mindshare and substantial software developer resources because it enables
small, medium, and large businesses to

❑ Get new products or services to market faster by minimizing time to deploy fixed IT assets, such
as servers, switches, and routers, and by eliminating related incremental capital investment in
these assets.

❑ Conduct market tests quickly and constrain losses by failing fast if the market, product, or ser-
vice doesn’t meet expectations.

❑ Defer long-term planning until results of initial market tests are known.

❑ Replace capital expenditures for unneeded capacity to accommodate periodic usage spikes, such
as those that occur after announcing seasonal discounts or a new software version, with usage-
based monthly payments.

If initial market tests succeed, serving software applications or services from the cloud lets business
units deploy new products quickly and scale applications or services almost instantly to meet customer
demands. For top management, the key to adopting cloud computing is its ability to trade IT capital
investment for usage-based operating expenditures.

Cloud Computing’s Ancestry
On the client side, many computer hardware and software suppliers took up the challenge of breaking
the Microsoft/Intel hegemony in the PC market by designing and marketing networked diskless work-
stations, also known as thin clients. Microsoft offered its own thin Internet clients as Web TV set-tops and
connected to intranets with Zero-Administration Windows (ZAW) for NetPC clients. These client designs
reduced cost by eliminating local fixed disks and relied on networked servers to load applications and
store user files. However, thin-client prices weren’t low enough to capture significant market share from
the ubiquitous Windows PC.

The new netbook platform, which appeared in the laptop PC market just as cloud computing gained
widespread attention, appears to offer sufficient cost incentive to achieve volume manufacture. Net-
books usually offer conventional hard disks with less capacity than mainstream laptops or solid-state
disks (SSDs).

Application service providers (ASPs) and web hosting firms were the first to rent server CPU cycles and
storage space on an as-needed basis. The larger of these organizations are expected to participate in the
cloud computing market.

Diskless Workstations and Thin Clients
Oracle’s Network Computer (NC) concept of the mid-1990s probably is cloud computing’s most direct
ancestor. Oracle trademarked the Network Computer term in 1996 for a diskless network client for business

7

Part I: Introducing the Windows Azure Platform

use and established a Network Computer Reference Profile. The profile required all NC appliances to
support HTML, HTTP, Java, and other Internet-related standards. The price advantage of NCs over PCs,
if any, wasn’t sufficient to create a significant market among businesses and the poor connectivity of
dial-up connections discouraged consumer NetPC usage.

Microsoft and Intel produced a competing standard called ‘‘NetPC’’ to compete with the NC profile. In
1997 Dell Computer introduced a sealed-case PC with no floppy disk, CD drive, or other optional compo-
nents, that ran Windows NT 4.0 Workstation. Compaq and HP introduced similar NetPC workstations
that ran ZAW in mid-1997.

Sun Microsystems’ trademarked ‘‘The Network is the Computer’’ motto led to its initiative to replace
PCs with JavaStations, which used the Java operating system running on SPARC processors. IBM dipped
its toe in the diskless workstation market with Network Stations. JavaStations and Network Stations had
the same technology problems as NCs. Wyse Technology, Inc., originally a manufacturer of terminals for
mainframes and minicomputers, entered the PC market and then branched into NCs in the 1990s.

These thin clients had sufficient computing power to run a web browser and a few simple applications
downloaded from the Web on demand but relied on networked disc storage. Oracle CEO Larry Ellison
abandoned the NC project and Sun gave up on the JavaStation in about 2000. NetPCs and ZAW fared
no better; of these U.S. thin-client pilgrims, only Wyse was producing significant quantities of dedicated
thin-client workstations for business use in 2009.

Thin clients might make a comeback with VMware Inc.’s release of VMware View Open Client, a recently
open-sourced desktop infrastructure client that lets you connect a Linux desktop or laptop to hosted
virtual Windows desktops managed by VMware View. Gartner predicts that

❑ Approximately 50 million user licenses for hosted virtual desktops will be purchased by 2013.

❑ Thin-client terminals will account for about 40 percent of user devices for hosted virtual desktop
deployment.

Web TV and Its Clones or Descendants
Microsoft acquired WebTV Networks, which operated an online consumer web service and licensed the
design of a diskless workstation that used a conventional TV set as the display, in August 1997. At the
time, WebTV Networks had about 150,000 subscribers; both Sony and Philips were producing WebTV
set-top boxes under license. Microsoft purchased WebTV Networks’ subscribers in 2001 for the Microsoft
Network (MSN), terminated Sony Electronics’ and Philips Consumer Electronics’ licenses, and rebranded
WebTV as MSN TV. Thomson remains the sole U.S. set-top box licensee under the RCA brand.

America Online introduced AOL-TV, a WebTV lookalike, in 2000. In 1999 AOL teamed with Liberate
Technologies, formerly known as NCI or Network Computers, Inc., a creator of thin-client systems
such as the NetChannel, to write software for its set-top box. AOL reportedly had offered $65 million
for NetChannel in December 1997, but negotiations broke down and AOL ceased financial support for
NetChannel. AOL finally paid $29 million for NetChannel after it shut down service to its 10,000 sub-
scribers on May 3, 1998. Thomson was the producer of NetChannel’s set-top box but Philips made
AOL-TV’s set-top boxes, which sold for $249.95. The AOL-TV subscription cost $14.95 per month on
top of AOL’s then $21.95 per month PC service charge.

8

Chapter 1: Surveying the Role of Cloud Computing

In 2004, when MSN TV 2 launched with set-top boxes that ran the Windows CE operating system and
offered broadband access as well as dial-up Internet connectivity, analysts estimated that MSN TV had
about one million subscribers.

As of early 2009, RCA MSN TV 2 Internet and Media Players had an MSRP of $199.95 and were available
online through Amazon.com and a few other retailers but were on backorder from Microsoft. (Circuit
City, the sole in-store MSN TV 2 box retailer, voluntarily liquidated in January 2009.) Microsoft’s ‘‘MSN
TV Services Fact Sheet’’ page on PressPass hasn’t changed since May 2006, which might indicate a lack
of Microsoft’s interest in continuing to devote resources to MSN TV 2.

Netbook Clients
Netbooks are small laptop PCs that are designed for wireless networking and access to the Internet,
long battery life, and physical robustness. The netbook platform grew out of Nicholas Negroponte’s
One Laptop per Child (OLPC) program whose mission is, ‘‘To create educational opportunities for the
world’s poorest children by providing each child with a rugged, low-cost, low-power, connected laptop
with content and software designed for collaborative, joyful, self-empowered learning.’’ The original
OX-1 model, which went into large-scale production in late 2007, targeted a $100 cost to third-world
governments by 2008. The OX-1 features an AMD CPU, 1200 x 900-pixel, 7.5-in. (diagonal) LCD display,
256MB DRAM, 1GB ROM for the Linux operating system and ‘‘Open Firmware,’’ 1GB flash memory, a
Secure Digital (SD) card slot, and 802.11b/g and 802.11s (mesh) wireless communication. The price in
early 2009 for substantial quantities turned out to be about US$219 for the 50 least-developed countries
and US$259 for other jurisdictions.

Intel’s Classmate PC design, which like the OLPC OX-1 is designed for emerging markets, provides street
cred to the almost US$300 actual selling price category. Acer Aspire One, Asus Eee PC, Dell Inspiron
Mini, and HP Mini models offer prices ranging from about US$300 to US$400, depending on display
size, SSD capacity and other specifications. In early 2009, AT&T offered a US$349 mail-in rebate to Dell
Inspiron Mini 9 purchasers who sign up for an AT&T data plan, which reduces the cost of the netbook to
US$99. Other carriers probably will join AT&T with iPhone-like hardware subsidies to gain cellular data
subscribers.

Netbooks powered by Atom CPUs from Intel running Google’s Chrome OS operating system are expected
by 2010.

Other assemblers add ‘‘Cloud’’ to their model names; for example, Everex introduced its US$399 Cloud-
Book computer in early 2008. The New York Times writers Brad Stone and Ashlee Vance point out in their
‘‘$200 Laptops Break a Business Model’’ story of January 25, 2009:

[M]ore experimental but lower-cost technologies like netbooks, Internet-based soft-
ware services (called cloud computing) and virtualization, which lets companies run
more software on each physical server, are on the rise . . .

The only bright spot in the PC industry is netbooks. Analysts at the Gartner research
company said shipments rose to 4.4 million devices in the third quarter of 2008, from
500,000 units in the first quarter of last year. Analysts say sales could double this year
(2009) despite a deep worldwide recession.

9

Part I: Introducing the Windows Azure Platform

Market researcher DisplaySearch projects sub-US$300 netbooks to increase from worldwide sales of
one million units in 2007 to 14 million in 2009. Netbooks and smartphones probably will constitute the
majority of clients connected to cloud-computing virtual servers by 2010.

Application Service Providers and Software as a Service
The ASP market fueled the late 1990s dot-com bubble but ASPs also were one of the largest market
segments to survive the early 2000s burst. As Service-Oriented Architecture (SOA) gained traction with
software developers and enterprise IT departments, ASPs gradually became known as Software as a
Service (SaaS) providers. There are five generally accepted ASP market segments:

❑ Specialty ASPs usually deliver a single application, such as credit card or other payment process-
ing, customer relationship management (CRM), human resources management system (HRMS),
word processing, spreadsheet, database or timesheet services. Google Apps provide web-based
email, calendar, word-processing, spreadsheet and presentation modules to business users for a
fixed charge per user per year, while Salesforce.com rents CRM capabilities and Intuit provides
its QuickBase RDBMS with per subscriber per month billing.

❑ Enterprise ASPs deliver a broad spectrum of specialty ASP solutions. For example, Microsoft
rents Microsoft SharePoint Services, Microsoft Dynamics CRM Services, and Office Business
Applications (OBAs), as well as Windows Live services online.

❑ Vertical-market ASPs deliver multiple software solutions for a specific customer category, such as
medical or dental practice, insurance brokerage, church congregation, residential or commercial
construction, or personal finance management.

❑ Local-market ASPs deliver geocoded marketing services to small service businesses, such as
restaurants, pubs and bars, within a limited geographic region.

ASPs usually charge fixed monthly fees per subscriber, which include software license fees. ‘‘Excessive
usage’’ surcharges aren’t common, but providers often add disproportionate fees for ancillary ‘‘a la carte’’
services. Applications that require the provider to train customers’ users commonly involve setup fees,
yearly commitments, minimum payments, and the like.

Web Hosting Services
Web hosting services, which have been available since about 1991, are the most prolific of all cloud-
computing forebears; it’s estimated about 50,000 services in the U.S. host 100 or more web sites. Web
hosting services provide operating systems, web server implementations, e-mail processing, content
storage, high-speed Internet connectivity, and related services at monthly charges ranging from free to
thousands of dollars, depending on resources consumed. Web hosting services fall into the following
categories:

❑ Shared server hosting runs multiple sites from a single physical server and operating system
instance. Relatively little protection exists for an individual web site’s intellectual property with
shared server hosting because several services run on shared resources, including the same
operating system instance. Most free and low-cost (US$30.00 per month and lower) services use
shared server hosting. It’s common to include content storage up to about 1GB and Internet
traffic to 1TB or so per month in the basic monthly charge with surcharges for added storage
and traffic. Setup fees are uncommon.

10

Chapter 1: Surveying the Role of Cloud Computing

❑ Virtual Private Server (VPS), also called dedicated virtual server hosting, isolates the operating sys-
tem and web server in a virtualized instance, which allows a site to be logically partitioned from
other sites on one or a cluster of physical machines. VPS hosting provides additional security
and costs from about US$40 or more per month with increased storage and traffic limits. Small-
scale e-commerce sites commonly use VPS hosting. Some firms charge small setup fees for VPS
hosting.

❑ Dedicated server hosting leases a physical web server to the operator for increased security by
content isolation at a cost of from about US$200 per month and up, with the monthly charge
dependent on resources provided. Setup fees are common for dedicated server hosting.

❑ Colocation facilities house the web site operator’s server and storage hardware in a data center
building, often inside a fenced enclosure with restricted access. This is the only web hosting
category in which the hosting firm doesn’t own the Web and application servers. The colocation
provider supplies Internet connectivity, power, cooling, fire protection, data backup, and
other security services. Colocation commonly is used for large content-oriented web site
and medium-size or larger e-commerce sites. Setup and monthly charges are based on floor area,
power consumption, and Internet traffic.

Colocation facilities suffered mightily when the dot-com bubble burst and several such organizations
declared bankruptcy. Exodus Communications, one of the early large dedicated server hosting and
collocation facilities, captured a NASDAQ record for 13 consecutive quarters of more than 40 percent
growth and then opted for Chapter 11 bankruptcy in September 2001 during the demise of the dot-com
bubble.

Rackspace Hosting, Inc. is a large web hosting firm that offers VPS hosting (which it calls cloud hosting)
and specializes in managed hosting, which includes dedicated server hosting and collocation, targeting
small and medium-sized businesses (SMBs). Rackspace launched its Mosso division in February 2008 to
compete in the cloud computing market. The company acquired in October 2008 JungleDisk, an online
backup service, and Slicehost, a virtualized server provider, to enhance its competitive stance against
Amazon Web Services’ EC2, Simple Storage Services, and Elastic Block Storage. By early 2009, Rackspace
was managing more than 40,000 servers and devices for customers around the globe.

Cloud Computing and Everything as a Service
Cloud computing services, like many other SOA implementations, are composable. Wikipedia defines a
highly composable system as a system that ‘‘provides recombinant components that can be selected and
assembled in various combinations to satisfy specific user requirements. The essential attributes that
make a component composable are that it be: self-contained (modular), that is, it can be deployed inde-
pendently . . . ; it may cooperate with other components, but dependent components are replaceable. It
must also be stateless, which means it treats each request as an independent transaction, unrelated to any
previous request.’’

Following are the generally accepted recombinant components that contribute to delivering cloud
computing:

❑ Files [storage] as a Service: FaaS, often called Data Storage as a Service (DaaS), lets users store
files of various data types in a highly scalable hierarchical file system and retrieve them
over the Internet as various Multipurpose Internet Mail Extension (MIME) types. FaaS was
one of the first cloud-based services. Several Internet start-ups, such as SmugMug, DropBox,

11

Part I: Introducing the Windows Azure Platform

Ozmo, and HolaServers, use Amazon Web Services’ Simple Storage Service (S3) to hold graphic
images and other files, charging users a small or no access fee. Microsoft Live SkyDrive is a FaaS
provider that gives users up to 25GB of free file storage at no charge.

The term Data Storage or Database as a Service implies structured storage with at least some rela-
tional database management system (RDBMS) features, such as query capabilities, primary and
foreign key indexes, and entity associations through simulated JOINs. Commercial cloud ser-
vices, such as Amazon Web Services (AWS), Google App Engine (GAE), and Windows Azure,
offer indexed Entity-Attribute-Value (EAV) tables and query languages having some relation-
ship to SQL. Microsoft says SQL Azure Database (SADB) ‘‘offer highly scalable and Internet-
facing distributed database services in the cloud for storing and processing relational queries.’’
SADB, Amazon SimpleDB, and GAE’s DataStore offer advanced features that qualify them as
Databases as a Service (DBaaS).

❑ Software as a Service: SaaS delivers a packaged or equivalent commercial software application
to end users over the Internet with a subscription or usage-based pricing model, as opposed to
a traditional lifetime license for a particular version. Examples include Microsoft Office Live,
Microsoft Exchange Online, Microsoft SharePoint Online, Microsoft Dynamics CRM Online, and
Salesforce.com. Microsoft was an early SaaS supporter with SOAP-based web services but has
gradually migrated to promoting Software plus Services (S+S). Application as a Service is a syn-
onym for SaaS.

❑ Software plus Services: S+S is Microsoft’s marketing terminology for traditional licensed
on-premises software offered as a hosted service by Microsoft or hosting partners. Hosting
partners can offer virtualized private-labeled Microsoft server applications, such as Exchange or
SQL Server, or value-added services to Microsoft-hosted applications, such as Dynamics CRM.
The feature that distinguishes S+S is the ability for customers to run the equivalent services on
premises. The most interesting example of S+S is Amazon Web Service’s EC2 running Windows
Server 2003 and SQL Server [Express] 2005 with Elastic Block Store data storage and S3 storage
for Amazon Machine Images (AMIs) and EBS snapshot backups.

❑ Infrastructure as a Service: IaaS provides traditional data center resources, such as highly scalable
virtualized computing power, memory and storage, over a network (typically, but not necessar-
ily, the Internet) and usually with a subscription or per usage pricing model. IaaS is also called
utility computing. Internet-delivered cloud examples include Amazon Web Services, GoGrid, and
Flexiscale. IaaS or PaaS delivered over an intranet is called a private cloud.

❑ Communication as a Service: CaaS provides communication capability that is service-oriented,
configurable, schedulable, predictable, and reliable, as well as network security, dynamic pro-
visioning of virtual overlays for traffic isolation or dedicated bandwidth, guaranteed message
delay, communication encryption, and network monitoring. CaaS is critical to meeting Service
Level Agreements (SLAs) but usually is considered to be a component of SaaS, S+S, or IaaS.

❑ Monitoring as a Service: MaaS notifies the user of cloud computing or network outages, errors,
or slowdowns. For example, Cloud Status is a simple iPhone application that monitors the sta-
tus of Amazon Web Services, Google App Engine, and Twitter and reports whether service is
normal, has problems, or is down. MaaS can contain auditing components for network vulner-
ability assessment or to verify SLA conformance and the accuracy of monthly usage charges.
Some suppliers of MaaS services, such as RightScale, also provide instance deployment automa-
tion for increasing the number of running AMI instances during demand peaks and reducing the
number as demand subsides.

12

Chapter 1: Surveying the Role of Cloud Computing

❑ Platform as a Service: PaaS usually comprises at least these three distinct elements:

❑ Tools as a Service (TaaS), which provides Web-based development tools and languages,
such as Microsoft Visual Studio (for Visual C#, Visual Basic, IronPython, and IronRuby) or
open-source Eclipse (primarily for Java). The Windows Azure Tools for VS 2008 include
templates for creating Web, Worker, Web and Worker, and Cloud Sequential Workflow
Services that can run under a local (developer) or cloud (production) Windows Azure
instance (fabric). Google App Engine offers a hosted Python variant as well as webapp and
Django frameworks.

❑ A virtualized runtime application platform that enables running applications in the cloud, typ-
ically on top of an IaaS and delivered as SaaS. Amazon EC2 has pre-built AMIs for 32-bit
and 64-bit Linux distributions, Windows Server 2003 R2 with SQL Server 2005, and Ora-
cle databases, as well as 64-bit OpenSolaris. Windows Azure runs on Windows Server
2008 with a custom version of Microsoft’s Hyper-V hypervisor. Google App Engine offers
Python.

❑ FaaS to persist the state of the runtime application in Amazon’s Elastic Block Store, Sim-
pleDB or S3, Google’s BigTable, or Windows Azure Storage Services’ tables and blobs.

❑ Everything as a Service: EaaS, XaaS, or *aaS is a subset of cloud computing, according to
Wikipedia, which calls EaaS ‘‘a concept of being able to call up re-usable, fine-grained software
components across a network.’’ What’s missing in this definition is orchestrated interaction
between the components to solve a business problem, which is often called Integration as a
Service.

HP is one of the major proponents of Everything as a Service. ‘‘Topic 22: Creating a Business
Operating Environment in the Global Services Ecosystem,’’ one of HP Labs’ 2008 Research Top-
ics in its Innovative Research Programs, starts with these two paragraphs:

In this applied research project, HP Labs is investigating what customer ser-
vice lifecycles and experiences are possible in an ‘‘Everything as a Service’’
model and prototyping underlying intellectual property to enable them. HP
Labs’ goal in this research area is to address the technical challenges that
must be overcome to move a business task to services over the Internet.

Shane Robison, HP’s Chief Strategy and Technology Officer, has detailed a
set of ‘‘Everything as a Service’’ predictions that he believes will shape the IT
industry in years to come. One of his predictions is that ‘‘by 2012, a Fortune
50 company will research, develop, and launch a major product using only
Internet-based services.’’ This opinion is supported by information available
from industry analysts, such as Gartner and IDC. In this project, we ask:
‘‘What would a corporation wishing to move to an ‘Everything as a Service’
model need to do?’’

The preceding component definitions incorporate concepts and content from Wikipedia, blog posts by Geva
Perry, David Linthicum, and James Urquhart, as well as the ‘‘Toward a Unified Ontology of Cloud
Computing’’ research paper (http://bit.ly/12BPZD, www.cs.ucsb.edu/~lyouseff/CCOntology/
CloudOntology.pdf) by Lamia Youseff (University of California, Santa Barbara, California), and
Maria Butrico and Dilma Da Silva (IBM T.J. Watson Research Center, Yorktown, New York).

13

Part I: Introducing the Windows Azure Platform

Cloud Computing Ontologies
The term cloud computing has yet to gain a meaning, set of technologies, or level of abstraction upon which
all participants — observers, suppliers, and consumers — can agree. Catchall terminology, such as SOA,
utility computing, or open services, isn’t precise enough to identify the cloud-computing model accurately.
This situation invites information scientists to attempt creating a cloud computing ontology. According
to Wikipedia, ‘‘ontology deals with questions concerning what entities exist or can be said to exist, and
how such entities can be grouped, related within a hierarchy, and subdivided according to similarities
and differences.’’

Rising to the occasion, Lamia Youseff, a Ph.D candidate at the University of California, Santa Barbara,
California, and Maria Butrico and Dilma Da Silva, researchers at the IBM T.J. Watson Research Center,
Yorktown, New York, published in 2008 a ‘‘Toward a Unified Ontology of Cloud Computing’’ research
paper that establishes the five-layer model shown in Figure 1-4 to define the relationships between SaaS,
PaaS, IaaS, DaaS, CaaS, and HaaS.

Firmware/Hardware

Firmware/Hardware (HaaS)

Software Kernel

Cloud Software Infrastructure

Computational
Resources (IaaS)

Data Storage
(Daas)

Communication
(CaaS)

Cloud Software Environment (PaaS)

Cloud Application (SaaS)

Figure 1-4: The five-layer structure of cloud
computing as described in the ‘‘Toward a Unified
Ontology of Cloud Computing’’ research paper.

Following is a high-level overview of Youseff’s five-layer ontological model as used in this book:

❑ Youseff and her colleagues designate the top-level Cloud Application Layer as the access point for
SaaS applications, such as Salesforce CRM and GAE, through Web portals.

❑ Cloud application developers use the Cloud Software Environment Layer, which provides sup-
port for a programming language and a set of application programming interfaces (APIs) ‘‘to
facilitate the interaction between the environments and the cloud applications,’’ which leads to
the Platform as a Service moniker. The Cloud Software Environment Layer is built on the Soft-
ware Kernel and Firmware/Hardware layers and provides Computational Services (IaaS), Data
Storage (DaaS), and Communication (CaaS) services. Virtual machines (VMs) commonly deliver
IaaS, although Windows Azure offers the option of a dedicated server running Windows Server
2008. However, it’s arguable that CaaS capabilities belong at the lower Firmware/Hardware
(HaaS) level because off-premises HaaS isn’t practical without CaaS.

The authors classify Salesforce CRM with its Apex ‘‘on-demand’’ programming language and
GAE, which supports Python, in the top two layers. Salesforce.com designates Force.com as
a PaaS offering that supports 800+ applications from independent software vendors (ISVs)

14

Chapter 1: Surveying the Role of Cloud Computing

and 80,000+ custom applications as of early 2009. GAE requires at least some familiarity with
Python programming to provide useful services, but promises to support other languages in
the future. The Windows Azure Platform’s name and its dependence on Visual Studio 2008
place Microsoft’s cloud offering squarely in the PaaS category. Windows Azure supports any
programming language that conforms to the Common Language Runtime (CLR). The Youseff
research paper didn’t include a reference to Azure as of early 2009.

❑ The Software Kernel can be implemented as an OS kernel, hypervisor, virtual machine monitor
and/or clustering middleware, or various combinations of these systems. Although grid appli-
cations played a significant role in early cloud computing implementations, the grid has given
way to the hypervisor as the preferred software kernel for cloud computing because the latter
abstracts hardware idiosyncrasies from the service. Adding CaaS makes this layer equivalent to
traditional VPS Web hosting.

❑ The Firmware/Hardware layer is the physical computing, switching, and routing hardware that
forms the cloud’s backbone. The HaaS provider operates, manages, and upgrades the hardware
on behalf of its lessees, who supply their own operating system and application software, and
charges by the GB for data ingress and egress, similar to web server colocation. Leasing elimi-
nates users’ need to invest in building and managing data centers and might reduce the cost of
power and insurance.

Other recognized and self-anointed cloud computing ‘‘thought leaders’’ offer numerous cloud
computing definitions and ontologies. For example, David Linthicum of Blue Mountain Labs
proposes and briefly describes the following 10 major cloud computing components in his
‘‘Defining the Cloud Computing Framework’’ blog post of January 18, 2009 (http://bit.ly/iYgXc,
http://cloudcomputing.sys-con.com/node/811519):

❑ Storage-as-a-Service

❑ Platform-as-a-Service

❑ Database-as-a-Service

❑ Integration-as-a-Service

❑ Information-as-a-Service

❑ Security-as-a-Service

❑ Process-as-a-Service

❑ Management/Governance-as-a-Service

❑ Application-as-a-Service

❑ Testing-as-a-Service

According to its CCIF Mission & Goals Web page, the Cloud Computing Interoperability Forum
(http://bit.ly/YAmDP, http://groups.google.com/group/cloudforum/web/ccif-mission-goals)
‘‘was formed in order to enable a global cloud computing ecosystem whereby organizations are
able to seamlessly work together for the purposes for wider industry adoption of cloud computing
technology and related services. A key focus will be placed on the creation of a common agreed-upon
framework/ontology that enables the ability of two or more cloud platforms to exchange information in
a unified manner.’’ The CCIF’s Google Group had about 550 members in early 2009.

Attempts to create detailed taxonomies for cloud computing inevitably result in re-running the Red
Queen’s race: ‘‘It takes all the running you can do to keep in the same place.’’ Youseff’s five-level ontology
is likely to suffice until cloud computing reaches adolescence or the CCIF produces an alternative.

15

Part I: Introducing the Windows Azure Platform

The Red Queen in Lewis Carroll’s Through the Looking-Glass and What Alice Found There said, ‘‘It
takes all the running you can do to keep in the same place. If you want to get somewhere else, you must
run at least twice as fast as that.’’

According to Wikipedia, the Red Queen Principle can be restated as: ‘‘For an evolutionary system,
continuing development is needed just in order to maintain its fitness relative to the systems it is co-
evolving with.’’

Cloud Computing Concerns
Privacy and security are the two primary governance issues that IT managers face when attempting
to reduce project budgets and improve scalability with PaaS, IaaS, SaaS, or any combination of cloud
computing services. An InformationWeek magazine poll of 456 ‘‘business technology professionals’’ con-
ducted in late 2008 found only 18 percent were using cloud services and 34 percent had no interest in
doing so (http://bit.ly/SqcTY, www.internetevolution.com/document.asp?doc_id=170782). More
than half of the respondents expressed concern about security; performance, control, vendor lock-in, and
support were the next four most-expressed doubts about cloud computing. SaaS has been subject to the
same litany of doubt, but the successes of Salesforce.com and AWS prove that governance issues can be
overcome.

Following are the ‘‘Five Fast Fixes’’ to secure data in the cloud recommended by Mike Fratto, the author
of InformationWeek’s ‘‘Cloud Control’’ article of January 26, 2009 that delivered the poll’s conclusions:

1. Define Your Governance Needs: Are they internal, external, legal? List the requirements and
how they’re satisfied.

2. Classify Your Data: Before you can determine what data you can safely put in the cloud, you
first have to classify and label it according to sensitivity and type.

3. Choose Wisely: Identify cloud vendors that can satisfy your processing and governance needs.
Direct business leaders to walk away from the rest, no matter how attractive pricing is.

4. Set Limits: Define what the service provider can do with your data. Prohibiting the outsourc-
ing of processing to a third party without your consent is basic.

5. Put Rules in Writing: Publish policies and procedures stating which cloud vendors can
receive which types of data.

One of the most important elements of cloud governance is ascertaining where data is located when it’s
in the cloud. As Fratto observes in his article, it’s possible for SaaS and other cloud providers to store data
on servers that are under the control of another organization. Outsourcing data storage or backup by the
computational services vendor can lead to two or more degrees of separation between your organization
and its original data or backups.

Industry groups, such as the Payment Card Industry (PCI) require banks, online merchants and Mem-
ber Service Providers (MSPs) to protect cardholder information by compliance with a set of security
standards, which include MasterCard’s Site Data Protection (SDP) program and Visa’s Cardholder Infor-
mation Security Program (CISP). The United States Health Insurance Portability and Accountability Act
of 1996 (HIPAA) establishes standardized mechanisms for electronic data interchange (EDI), security, and
confidentiality of all healthcare-related data, as well as security mechanisms to ensure confidentiality
and data integrity for any health information that identifies an individual. Not knowing who had
physical possession of your charge card data would surely fail a PCI audit, which might preclude a
merchant from accepting credit or debit card payment; it would certainly violate HIPAA confidentiality

16

Chapter 1: Surveying the Role of Cloud Computing

regulations, which can result in fines or other sanctions. However, these security and privacy issues also
apply to outsourcing conventional data entry and processing operations, which is becoming increasingly
commonplace, and aren’t specific to cloud computing.

The Information Technology Laboratory of the U.S. National Institute of Standards and Technology
(NIST) is contemplating the identification of minimal standards and architecture to enable federal agen-
cies to create or purchase interoperable cloud computing capabilities. The ITL’s Computer Security
Division has the mission ‘‘to provide standards and technology to protect information systems against
threats to the confidentiality of information, integrity of information and processes, and availability of
information and services in order to build trust and confidence in Information Technology (IT) systems.’’

NIST’s ‘‘Perspectives on Cloud Computing and Standards’’ presentation lists the following characteristics
of a potential Federal Cloud Infrastructure:

❑ Agencies would own cloud instances or ‘‘nodes.’’

❑ Nodes would provide the same software framework for running cloud applications.

❑ Nodes would participate in the Federal cloud infrastructure.

❑ Federal infrastructure would promote and adopt cloud architecture standards (non-proprietary).

❑ ‘‘Minimal standards’’ refers to the need to ensure node interoperability and application portabil-
ity without inhibiting innovation and adoption, thus limiting the scale of cloud deployments.

Subsequently, NIST issued their Draft NIST Working Definition of Cloud Computing v13 (http://
bit.ly/10TNdu, http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v14.doc)
and Presentation on Effectively and Securely Using the Cloud Computing Paradigm v18
(http://bit.ly/17PKbM, http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-
computing-v22.ppt). The Obama White House is expected to be the first major federal government
user of cloud-computing services.

When this book was written, there were no non-proprietary cloud architecture standards; node
interoperability was the target of a CCIF spinoff called the Unified Cloud Interface (UCI)
project (http://bit.ly/EHRrp, http://code.google.com/p/unifiedcloud) started by Enomaly
(http://bit.ly/16DldY) founder and chief technologist, Reuven Cohen. According to Cohen, UCI’s
‘‘concept is to provide a single interface that can be used to retrieve a unified representation of
all multi-cloud resources and to control these resources as needed.’’ Cohen writes in the project’s
UCI_Requirements Wiki:

The key drivers of a Unified Cloud Interface (UCI) is ‘‘One Abstraction to Rule Them
All’’ — an API for other APIs. [UCI would be a] singular abstraction that can encom-
pass the entire infrastructure stack as well as emerging cloud centric technologies
through a unified interface. What a semantic model enables for UCI is a capability to
bridge both cloud-based APIs such as Amazon Web Services with existing protocols
and standards, regardless of the level of adoption of the underlying API’s or technol-
ogy. The goal is simple, develop your application once, deploy anywhere at anytime
for any reason.

Cohen posits that ‘‘you can’t standardize what you can’t define,’’ so a cloud computing taxonomy/
ontology will play an important role in UCI. The final goal appears to be to prevent cloud vendor lock-in
by making it possible to migrate a deployed PaaS, IaaS, or SaaS project from an external to a private cloud
or to another vendor’s cloud infrastructure quickly and with minimal inconvenience or cost.

17

Part I: Introducing the Windows Azure Platform

NIST promises to create these additional ‘‘Special Publications’’ in 2009 and later:

❑ Securing cloud architectures

❑ Securing cloud applications

❑ Enabling and performing forensics in the cloud

❑ Centralizing security monitoring in a cloud architecture

❑ Obtaining security from third-party cloud architectures through service-level agreements

❑ Security compliance frameworks and cloud computing (for example, HIPAA, FISMA, SOX)

You can expect to find draft versions of these publications from a link to the Special Publications
(800 Series) on the Computer Security Division’s Computer Security Resource Center Publications page
(http://bit.ly/17d9qq, http://code.google.com/p/unifiedcloud).

If NIST can come up with a set of non-proprietary security features for an interoperable, non-proprietary
cloud architecture, Information Technology Laboratory will make a substantial contribution to cloud
computing’s future.

Summary
Cloud computing is an emerging technology that threatens to reach ‘‘next best thing’’ status in 2009 and
2010 while throwing off the remnants of its Wild West ancestry. Spurred by tightened cost controls on
fixed asset purchases, enterprise-scale IT departments will migrate beta deployments to full production
on Windows Azure, Amazon EC2/EBS/S3, Google App Engine, GoGrid, or other commercial cloud plat-
forms. IDC found cloud computing in October 2008 to be ‘‘accelerating adoption and poised to capture
IT spending growth over the next five years.’’ The key to cloud computing’s growth is monthly charges
based on usage instead of massive investment in on-premises server and networking facilities.

Off-premises web site hosting was an early precursor of cloud computing, but organizations such as
Amazon.com and Google were the first purveyors of Platform as a Service with Amazon Web Services
EC2 and the Google App Engine. Organizations that specialize in web site hosting, such as Rackspace
Hosting, Inc., began to expand their traditional service repertoire to offer Everything as a Service in the
last half of 2008. Microsoft was late to the cloud-computing party with its introduction of the Windows
Azure Platform in late October 2008.

Defining generic cloud computing is difficult because there’s no generally accepted ontology or taxonomy
of its services. SOA introduced Software as a Service and Microsoft’s Software+Services implementa-
tions, but Platform, Infrastructure, Computing, Storage, Communications, and Hardware as services also
have their place in cloud computing’s attempt to provide Everything as a Service. Three information
scientists have proposed a five-layer model that includes SaaS, PaaS, IaaS, DaaS, CaaS, and HaaS.

The cloud symbology implies unlimited or restricted access via the public Internet. Therefore, security for
cloud-based applications and data is one of upper management’s primary governance concerns. Today’s
clouds rely primarily on token-based user authentication and authorization schemes, but federated access
control integrated with enterprise directories is in most cloud purveyors’ plans. Another issue is vendor
lock-in because currently no standards exist for cloud interoperability and such standards might never
be agreed upon. Organizations that don’t trust existing Internet access control protocols can create their
own on-premises ‘‘private clouds’’ behind corporate firewalls, but doing so requires capital investment
in IT infrastructure and negates the primary justification for cloud computing.

18

Understanding Windows
Azure Platform

Architecture

The Windows Azure Platform is Microsoft’s Windows Platform as a Service (PaaS) offering that runs
on servers and related network infrastructure located in Microsoft data centers and is connected to
the public Internet. The platform consists of a highly scalable (elastic) cloud operating system, data
storage fabric and related services delivered by physical or logical (virtualized) Windows Server
2008 instances. The Windows Azure Software Development Kit (SDK) provides a development
version of the cloud-based services, as well as the tools and APIs needed to develop, deploy, and
manage scalable services in Windows Azure, including Visual Studio 2008 or 2010 templates for
a standardized set of Azure applications. Figure 2-1 illustrates the platform’s primary cloud and
developer components.

According to Microsoft, the primary uses for Azure are to

❑ Add web service capabilities to existing packaged applications

❑ Build, modify, and distribute applications to the Web with minimal on-premises resources

❑ Perform services, such as large-volume storage, batch processing, intense or high-volume
computations, and so on, off premises

❑ Create, test, debug, and distribute web services quickly and inexpensively

❑ Reduce costs and risks of building and extending on-premises resources

❑ Reduce the effort and costs of IT management

Part I: Introducing the Windows Azure Platform

Windows Azure Platform

Development Fabric

Development Storage
Table Services
Blob Services

Queue Services

Development Runtime

Azure (Cloud) Fabric

Azure Storage Services
Table Services
Blob Services

Queue Services

Azure Runtime

SQL Services
SQL Azure Database (SADB)

SQL Analysis Services*
SQL Report Services*

.NET Services
Access Control

Service Bus
Queues
Routers

Workflow

Live Services

Users
Devices

Applications
Synchronization

Identity
Directory
Storage

Communication
Presence
Search

GeospatialLive Operating
Environment

Cloud Services

Vista SP1, VS 2008

Applications

Web Cloud
Service

Worker Cloud
Service

Web and Worker
Service

Workflow
Service Windows Azure OS

Figure 2-1: Components of the Windows Azure Platform and SDK.
Services marked with an asterisk (*) were not available when this book
was written in mid-2009.

The economic environment into which Microsoft released Azure in late October 2008 dictates that cost
reduction — mentioned repeatedly in the preceding list — will be the primary motive for its adoption by
small, medium, and enterprise-scale IT departments.

Microsoft designed the Azure Platform to enable .NET developers to leverage their experience with
creating in Visual Studio 2008+ ASP.NET Web applications and Windows Communication Framework
(WCF) services. Web application projects run in a sand-boxed version of Internet Information Services
(IIS) 7; file-system-based web site projects aren’t supported, but announcement of a ‘‘durable drive’’ is
expected at PDC 2009. Web application and Web-based services run in partial trust Code Access Security,
which corresponds approximately to ASP.NET’s medium trust and limits access to some OS resources.
The Windows Azure SDK (March 2009 CTP) enabled optional full trust Code Access security for invoking

20

Chapter 2: Understanding Windows Azure Platform Architecture

non-.NET code, using .NET libraries that require full trust, and inter-process communication using
named pipes. Microsoft promises support for executing Ruby, PHP, and Python code in the cloud plat-
form. The initial development platform release was restricted to Visual Studio 2008+ as the development
environment with future support scheduled for Eclipse tools. The Azure Platform supports Web stan-
dards and protocols including SOAP, HTTP, XML, Atom, and AtomPub.

The Windows Azure Developer Portal
The initial entry point for Azure developers moving ASP.NET applications to the cloud is the
Windows Azure Development Portal at http://bit.ly/PbtOV (https://windows.azure.com/Cloud/
Provisioning/Default.aspx), which requires logging in with a Windows Live ID. Azure Community
Technical Previews (CTPs) require separate GUID tokens for

❑ Windows Azure, which includes

❑ Azure Hosted Services

❑ Storage Accounts

❑ SQL Azure

❑ Live Services, which includes

❑ Live Framework: Community Technology Preview

❑ Live Services: Existing APIs

Live Services: Existing APIs isn’t a CTP and doesn’t require a token; you receive a Compute Only Live
Services: Existing APIs account with each Windows Azure account. As of early 2009, a Windows Azure
token entitles you to one Hosted Services account, two Storage Accounts, as well as one Hosted Deploy-
ment and Hosted Deployment Instance. You request Azure tokens through a Microsoft Connect page
that you access by clicking the Billing link on the Development Portal’s Summary - My Projects page.

Figure 2-2 shows the Account page for the January 2009 CTP, which links to pages for setting up and
managing SQL Azure, .NET Services and Live Services accounts. This page lets you redeem Azure and
Live Framework CTP tokens provided by e-mail, and a Live Alerts page for specifying how and when to
receive messages containing application-critical alerts, newsletters, and portal updates.

The March 2009 CTP introduced geolocation, which permits account holders to specify the data centers
in which to store Hosted Services and Storage Accounts. Two choices were offered when this book was
written: USA-Northwest (Quincy, WA) and USA-Southeast (San Antonio, TX.) You add sets of Hosted
Services and Storage Accounts to an Affinity Group to assure that services and storage run in the same
data center, which improves performance.

Figure 2-3 shows part of the Tokens page with several Windows Azure tokens redeemed. You paste the
GUID received in a message from an Azure team member into the Resource Token ID text box and click
Claim Token to add one or more entries for the appropriate entity or entities to the list.

21

Part I: Introducing the Windows Azure Platform

Figure 2-2: The Development Portal’s Summary - Windows Azure page for the July 2009 CTP.

If you want to develop Live Framework-enabled web sites or Mesh-enabled web applications, request
a Live Framework CTP token by e-mail from meshctpe@microsoft.com. After you receive and redeem
the Live Framework token, download and install current CTPs of the Live Framework SDK and the Live
Framework Tools for Visual Studio from links on the Live Services SDK page at http://bit.ly/oJIoz
(http://dev.live.com/liveframework/sdk/). You must redeem a Live Framework token to download
the Live SDK and Tools. As mentioned in Chapter 1, programming Live Services is beyond the scope of
this book.

You don’t need a Windows Azure account to test-drive Azure Hosted Services and Storage Services,
because the Azure Development Platform emulates Azure’s cloud services on your development
computer, as you’ll see in the following sections.

22

Chapter 2: Understanding Windows Azure Platform Architecture

Figure 2-3: The Development Portal’s Account - Azure Tokens page for the July 2009 CTP with GUIDs
partially obscured.

Creating and Running Projects in the Azure
Development Platform

Azure Cloud Fabric and Azure Storage Services don’t support cloud-based development or
debugging operations, so the Azure SDK provides on-premises clones in the form of the Devel-
opment Fabric (DF) and Development Storage (DS) applications, which the Windows Azure SDK
installs. The SDK also installs a Programs\Windows Azure SDK [Month 2009 CTP] menu, as well
as a collection of sample applications and libraries of wrapper classes to simplify application
programming.

23

Part I: Introducing the Windows Azure Platform

.NET Framework 3.5 SP1 and SQL Express 2005 or 2008 must be present and you must enable
ASP.NET and WCF HTTP Activation for IIS 7.0 under Windows Server 2008, Windows Vista SP2,
or Windows 7 RC or later to install and run the SDK. The Windows Azure SDK CTP Release Notes
include instructions for setting these options. The SDK isn’t mandatory, because it’s possible to use any
operating system and programming language that supports HTTP requests and responses. However,
you’ll find using the SDK .NET APIs and libraries for applications and storage to be far simpler than
working with HTTP directly.

Installing Windows Azure SDK and Tools for Visual Studio
After you install the Windows Azure SDK, you must download and install the Windows Azure Tools for
Visual Studio to add templates for Web Cloud Service, Worker Cloud Service, Web and Worker Cloud
Service, and Workflow Service projects. The later ‘‘Using Azure Application Templates for Visual Studio
2008’’ section describes differences between these templates.

You can download the current version of the Windows Azure SDK and Windows Azure Tools for Visual
Studio from links at the bottom of Microsoft’s main Windows Azure page at http://bit.ly/A7Uza
(www.microsoft.com/azure/windowsazure.mspx).

Installing and Building the Windows Azure SDK Sample
Applications

Installing the Windows Azure SDK doesn’t install its sample applications, which are included in
the \Program Files\Microsoft Windows Azure SDK\v1.0\samples.zip file. Install the sample files by
unzipping samples.zip to a folder to which you have write access. This book uses samples extracted to
the C:\Windows Azure SDK Samples folder.

The following table describes the sample applications.

Windows PowerShell is required to run the CloudDrive sample.

The folder to which you extract samples.zip will also contain the following three command files that you
can run from the \Programs\Windows Azure SDK\Windows Azure SDK command prompt:

❑ buildall.cmd builds all sample projects without using Visual Studio; buildall.cmd runs the
BuildAll project, which isn’t a sample.

❑ createtables.cmd calls buildall.cmd and creates the database and tables required for the samples that
employ Table Storage.

❑ rundevstore.cmd calls createtables.cmd and launches development storage, pointing it to the
database created by createtables.cmd. Running development storage starts the Blob (binary large
object), Queue, and Table services, as described in the later ‘‘Development Storage’’ section.

24

Chapter 2: Understanding Windows Azure Platform Architecture

The simplest option is to execute rundevstore.cmd.

Project Name Project Description

AspProviders Sample Provides a sample library with implementations of the ASP.NET
Membership, Role, Profile, and Session State providers.

AspProvidersDemo
Sample

A simple service that makes use of the ASP.NET provider sample
library.

CloudDrive Sample A Windows PowerShell provider that enables command-line access to
Blob Storage and Queue service resources as though they are file system
resources available via a network drive.

DistributedSort Sample A distributed sorting service that demonstrates the use of Blob Storage
and the Queue service.

HelloFabric Sample A simple service that demonstrates a WebRole and a WorkerRole and
uses the Windows Azure runtime API to interact with the fabric from a
running instance.

HelloWorld Sample Demonstrates how to package a service for deployment to the
fabric.

PersonalWebSite
Sample

Demonstrates how to port an ASP.NET Web application to the
Windows Azure environment.

StorageClient Sample A sample client library that provides .NET wrapper classes for REST
API operations for Blob, Queue, and Table Storage. The sample also
includes a console application that can be used to test the library
functionality.

Thumbnails Sample A service that demonstrates a WebRole and a WorkerRole. The
WebRole provides a front-end application for the user to upload photos
and adds a work item to a queue. The WorkerRole fetches the work
item from the queue and creates thumbnails in the designated directory.

The Development Fabric
DF comprises the following executables: DFAgent.exe, DFLoadBalancer.exe, DFMonitor.exe, and
DFService.exe, which the Azure SDK setup program installs by default in the development PC’s
\Program Files\Windows Azure SDK\v1.0\bin\devfabric folder. The Task Manager’s Processes page
will show these four processes running after you start the DF by doing one of the following:

❑ Choose Programs\Windows Azure SDK\Development Fabric to start the Development Fabric
service and its UI (DFUI.exe).

25

Part I: Introducing the Windows Azure Platform

❑ Right-click the DF icon in the Taskbar’s Notification Area, if present, and choose Start
Development Fabric Service (see Figure 2-4).

❑ Compile and run an Azure-enabled application in Visual Studio.

Figure 2-4: Messages displayed by passing the
mouse over (top) or right-clicking (bottom) the
Taskbar’s DF icon in the Notification Area after
having started and stopped the DF.

Figure 2-5 shows the DFUI with two web applications (called Service Deployments) being debugged in
VS 2008 concurrently. The fabric assigns sequential deployment numbers (616 and 617 in the figure)
automatically. When you stop debugging, the corresponding application’s entries disappear from
DFUI’s window.

Figure 2-5: The Development Fabric UI application open with two sample Azure web
applications (WebRoles) running in VS 2008.

26

Chapter 2: Understanding Windows Azure Platform Architecture

Development Storage
The Windows Azure Platform supports three types of scalable persistent storage:

❑ unstructured data (blobs)

❑ structured data (tables)

❑ messages between applications, services, or both (queues)

Executing rundevstore.exe or building and running Azure user code in Visual Studio starts all three
services, even if your project requires only one, and displays the Development Storage UI shown in
Figure 2-6.

Figure 2-6: The Development Storage UI (DSUI) application open with
the default ports assigned by the rundevstore.exe program to the three
Azure Storage Services and the default table name for storing
development schemas.

To protect against data loss, the Azure cloud stores blobs, tables, and queues in at least three
separate containers in a single data center. Azure’s geolocation features let you duplicate data in
multiple Microsoft data centers for enhanced disaster recovery and to improve performance in specific
geographic regions.

Azure Service Definition and Service Configuration Files
Azure applications that you run in the Development Framework can access data stored locally in
Development Storage or uploaded to Azure cloud storage. The application looks for the port number
and stored data in the location specified as endpoints in the project’s ServiceConfiguration.cscfg file.

An Azure project’s ServiceDefinition.csdef file defines a set of standard input endpoints and configura-
tion settings whose values the ServiceConfiguration.cscfg file stores. Listing 2-1 shows the default content
of the ServiceDefinition.csdef file when you create an Azure project based on one of the Windows Azure
Tools for Visual Studio’s standard templates with significant values emphasized:

Listing 2-1: Default ServiceDefinition.csdef file content

<ServiceDefinition name="SampleWebCloudService"
xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition">

<WebRole name="WebRole">
<InputEndpoints>

<!-- Must use port 80 for http and port 443 for https

Continued

27

Part I: Introducing the Windows Azure Platform

Listing 2-1: Default ServiceDefinition.csdef file content (continued)

when running in the cloud -->
<InputEndpoint name="HttpIn" protocol="http" port="80" />

</InputEndpoints>
<ConfigurationSettings>

<Setting name="AccountName"/>
<Setting name="AccountSharedKey"/>
<Setting name="BlobStorageEndpoint"/>
<Setting name="QueueStorageEndpoint"/>
<Setting name="TableStorageEndpoint"/>

</ConfigurationSettings>
</WebRole>

</ServiceDefinition>

InputEndpoint values apply only to cloud storage.

Listing 2-2 is the content of the ServiceConfiguration.cscfg file for the SampleWebCloudService Web
application with default configuration values for Development Storage emphasized:

Listing 2-2: Default ServiceConfiguration.cscfg file content

<?xml version="1.0"?>
<ServiceConfiguration serviceName="SampleWebCloudService"
xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration">

<Role name="WebRole">
<Instances count="1"/>

<ConfigurationSettings>
<Setting name="AccountName" value="devstoreaccount1"/>
<Setting name="AccountSharedKey" value="Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ
1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw=="/>

<Setting name="BlobStorageEndpoint" value="http://127.0.0.1:10000/"/>
<Setting name="QueueStorageEndpoint" value="http://127.0.0.1:10001/"/>
<Setting name="TableStorageEndpoint" value="http://127.0.0.1:10002/"/>

<!--<Setting name="AccountName" value="oakleaf"/>
<Setting name="AccountSharedKey" value="3elV1ndd . . . Coc0AMQA==" />
<Setting name="BlobStorageEndpoint"

value="http://blob.core.windows.net" />
<Setting name="QueueStorageEndpoint"

value="http://queue.core.windows.net" />
<Setting name="TableStorageEndpoint"

value="http://table.core.windows.net" />
-->

</ConfigurationSettings>
</Role>

</ServiceConfiguration>

The emphasized values are for Development Storage and commented values are those for cloud data
storage with a Windows Azure Storage Account. Using XML comments simplifies changing between
Development and cloud storage during the development process.

28

Chapter 2: Understanding Windows Azure Platform Architecture

Following are definitions of the default configuration elements in the ServiceConfiguration.csfg file:

❑ Instances count is the number of instances of your application that the cloud fabric will create
when you deploy it.

❑ AccountName for cloud storage is the name you assigned to your Hosted Service with which you
created the account; for Development Storage it’s devstoreaccount1 (a constant)

❑ AccountSharedKey for cloud storage encrypts several elements in the HTTP request message
(called ‘‘Request Signing’’), is confidential, is truncated in the preceding example, and isn’t sent
to the cloud. The value is a public constant for Developer Storage. In either case, the base64-
encoded value must appear in the element as a single line of text.

❑ BlobStorageEndpoint for cloud storage is a public Universal Resource Identifier (URI) con-
stant; for Developer Storage it’s the development computer’s loopback address (localhost =
127.0.0.1) with 10000 as the default TCP port.

❑ QueueStorageEndpoint for cloud storage is a public URI constant; for Developer Storage it’s the
loopback address with 10001 as the default TCP port.

❑ TableStorageEndpoint for cloud storage is a public URI constant; for Development Storage it’s
the loopback address with 10002 as the default TCP port.

The Endpoint values appear in the Development Storage UI in Figure 2-6. You can specify custom TCP
port numbers if the default values cause conflicts.

Azure Table Services
Choosing Tools, Table Service Properties in the DevelopmentStorage.exe application opens a dialog of
the same name to let you change the SQL Server Express Edition database name that stores development
schemas. (Cloud tables consist of metadata columns and property bags, and don’t support schemas.)
ServiceHostingSDKSamples is the default database name that rundevstore.exe creates; this chapter’s OakLeaf
Systems Azure Table Services Sample Project stores its schemas in the SampleWebCloudService database,
as shown in Figure 2-7.

You can read the seven-part ‘‘Azure Table Storage Services Test Harness’’ blog series starting with
‘‘Part 1 — Introduction and Overview’’ at http://bit.ly/gPjQu, http://oakleafblog.blogspot.
com/2008/11/azure-storage-services-test-harness.html. The series describes in detail
coding techniques for basic Azure projects. You might find the ‘‘Retire your Data Center’’
cover story from the February 2009 issue of Visual Studio Magazine (http://bit.ly/gBIgk,
http://visualstudiomagazine.com/articles/2009/02/01/retire-your-data-center.aspx),
which describes the same application, also of interest.

Relational database management systems (RDBMSs) can be clustered to achieve high reliability. Running
RDBMSs on high-performance servers, a process called scaling up, enables accommodating a large
number of concurrent users. Serving data to thousands of Internet-facing servers in web farms requires
scaling out tables by data replication, which conflicts with relational databases’ reliance on immediate
data consistency, referential integrity through foreign-key constraints, and ACID transactions. Entity-
attribute-value (EAV) tables, such as those used by Google’s BigTable storage system, which the Google
App Engine uses, and Amazon Web Services’ SimpleDB database, offer the capability to scale out easily
and quickly by data replication at the expense of delayed data consistency (called latency) between
replicas in multiple partitions. Scaling tables and other Azure Data Services data types is the topic of
Chapter 4, ‘‘Scaling Azure Table and Blob Storage.’’

29

Part I: Introducing the Windows Azure Platform

ACID is an acronym for atomic, consistent, isolated and durable.

Eric Brewer’s CAP Theorem (http://bit.ly/18p9Ym, www.cs.berkeley.edu/~brewer/
cs262b-2004/PODC-keynote.pdf) states that for the three properties of shared-data systems — data
consistency, system availability, and network partitioning tolerance — only two can be achieved
simultaneously. For example, a database that doesn’t tolerate network partitions can achieve consistency
and availability by using traditional RDBMS techniques, such as ACID transactions. Large distributed
systems, such as those used by Amazon and Google, require network partitions so consistency can be
achieved only by giving up availability or vice versa. Brewer proposes to substitute BASE for ACID;
BASE is an acronym for basically available, soft-state, and eventual consistency.

Figure 2-7: Changing the local table storage database in
the DSUI application from the default
ServiceHostingSDKSamples to SampleWebCloudService.

Figure 2-8 shows in SQL Server Management Studio 2005 the columns (attributes) of the Northwind
sample database’s Customers table imported into an Azure CustomerTable. The PartitionKey and
RowKey attributes shown as a composite primary key in the bottom of the right pane form a composite
entity (object) identifier that must be unique within a table; the RDBMS updates the Timestamp value for
newly added or updated entities (rows). Azure considers PartitionKey, RowKey (string), and Timestamp
(DataTime) values to be metadata and requires these attributes to be present in all tables; metadata values
not shown include NextRowKey and NextPartitionKey, which applications use for data paging. The
remaining nvarchar(1000) attributes are members of a property bag, which have optional user-supplied
values. Data types for property bag entities can be Binary, Bool, DateTime, Double, GUID, Int, Long, or
UTF-16-encoded String.

Entities may have up to 255 properties (attributes), including the three metadata (system) properties.
The total size of an entity’s data values is limited to 2MB.

Tables support HTTP GET, PUT, MERGE, POST, and DELETE operations. The base URI for the GET method
to return a table from cloud storage is http://AccountName.table.core.windows.net/Tables
(’TableName’). Query expressions return filtered entity sets with URIs, such as http://AccountName.
table.core.windows.net/TableName$filter=QueryExpression). ADO.NET Data Services defines the

30

Chapter 2: Understanding Windows Azure Platform Architecture

query expression syntax. The .NET Client Library for ADO.NET Data Services (System.Data.Services.
Client.dll) lets you use a subset of LINQ Standard Query Operators to generate URIs containing query
expressions. The ‘‘Using the .NET Client Library with Table Storage’’ whitepaper (http://bit.ly/I37Ix,
http://msdn.microsoft.com/en-us/library/dd179445.aspx) describes the client library classes
and querying with LINQ. Queries return a maximum of 1,000 entities; paging with a combination of
NextContainerKey and NextRowKey values (called a continuation token)enables returning more than 1,000
entities to an application.

Replace AccountName.table.core.windows.net with 127.0.0.1:10002/devstoreaccount1 for
Development Storage.

Figure 2-8: SQL Server Management Studio 2005 displaying columns (attributes) created from
the Northwind Customers table and saved in an Azure table in Developer Storage.

Figure 2-9 is a screen capture of the OakLeaf Systems Azure Table Services Sample Project’s web page
displaying in the Development Fabric the first page of 12 CustomerTable entities and user-entered data
for a new BOGUS customer entity to be inserted. You can test-drive the web application’s production
version at http://oakleaf.cloudapp.net/ and learn more about its structure in the later ‘‘Web Cloud
Services’’ section and analyze its code in Chapter 7, ‘‘Optimizing the Scalability and Performance of
Azure Tables.’’

31

Part I: Introducing the Windows Azure Platform

Figure 2-9: The Default.aspx page of the OakLeaf Systems Azure Table Services Sample Project
(SampleCloudWebService) running in the Development Fabric.

Azure Blob Services
Blobs store binary data, such as images, XML documents, compressed (zipped or gzipped) files, and
other content as an arbitrary array of bytes within a container that’s associated with a storage account.
A container is a user-defined set of blobs that has only properties, which include a list of the blobs it
contains. Containers don’t store data directly.

The following GET URI returns a list of all blobs from a container named ContainerName:
http://AccountName.blob.core.windows.net/ContainerName$comp=list. Use http://AccountName
.blob.core.windows.net/ContainerName/BlobName to read or download a specific blob, including
metadata and user-defined properties.

Replace AccountName.blob.core.windows.net with 127.0.0.1:10000/devstoreaccount1 for
Development Storage.

You can upload a maximum of 64MB of data in a Put Blob operation to create a blob. You create blobs
larger than 64MB by uploading a sequence of blocks, which are a maximum of 4MB in size, with Put
Block operations.

32

Chapter 2: Understanding Windows Azure Platform Architecture

Figure 2-10 shows the default page of the OakLeaf Systems Azure Blob Services Test Harness application
after uploading two sets of three bitmap files and four zipped bitmap files from Windows Live SkyDrive
plus an HTML file from a web page. HTTP headers, metadata, and user-defined property values
provide the GridView control’s data source. You can test-drive the AzureBlobTest application at
http://oakleaf2.cloudapp.net/, learn more about its structure in the later ‘‘Web Cloud Services’’
section, and analyze its code in Chapter 4, ‘‘Scaling Azure Table and Blob Storage.’’

Upload Time is the time in seconds to stream the blob data to a filestream in the application; Create Time
is the time in seconds to create the blob from the filestream. Upload times with cloud storage are much
lower than those shown in Figure 2-10 because of better Internet connectivity between the application
and SkyDrive, which might be colocated in a Microsoft data center. Microsoft promises filestream storage
in future CTP releases.

Figure 2-10: The Default.aspx page of the OakLeaf Systems Azure Blog Services Test Harness
(AzureBlobTest) running in the Development Fabric.

Azure Queue Services
Azure queues are messages up to 8KB in size that any client or application with access to the
storage account can access on a first-in, first-out basis. Azure queues have a REST API that’s similar
to that for blobs. For example, the following GET URI returns a list of all queues from a storage
account named AccountName: http://AccountName.queue.core.windows.net$comp=list. Use

33

Part I: Introducing the Windows Azure Platform

http://AccountName.queue.core.windows.net/QueueName to retrieve one or more messages. Specify
an optional numofmessages parameter to retrieve 2 to a maximum of 32 messages.

Replace AccountName.queue.core.windows.net with 127.0.0.1:10001/devstoreaccount1 for
Development Storage.

The Put Message operation adds messages to a cloud queue by invoking the POST method with a URI
such as http://AccountName.queue.core.windows.net/QueueName/messages with a Request Body
consisting of one or more of the following XML fragments:

<QueueMessage>
<MessageText>message-content</MessageText>

</QueueMessage>

where message-content is a string that can be UTF-8-encoded. Binary content must be Base64-encoded.

Figure 2-11 shows the default page of the Photo Gallery Azure Queue Services Test Harness appli-
cation. Queue Name is a numeric date/time equivalent followed by a GUID to automatically sort in
ascending creation date sequence. Type is the message-content ‘s Multipart Internet Mail Extensions
(MIME) type. ETag is a date/time code that used to support optimistic consistency. You can test-drive
the AzureQueueTest application at http://oakleaf5.cloudapp.net/, learn more about its structure in
the later ‘‘Worker Cloud Services’’ section, and analyze its code in Chapter 8.

Figure 2-11: The Default.aspx page of the Photo Gallery Azure Queue Services Test Harness running in
the Development Fabric.

34

Chapter 2: Understanding Windows Azure Platform Architecture

Using Azure Application Templates for Visual
Studio 2008

Downloading Windows Azure Tools for Visual Studio adds a Cloud Service template node to the New
Project dialog. Double-clicking the Cloud Service node opens the New Cloud Service Project dialog,
which enables adding ASP.NET Web Roles, Worker Roles or CGI Web Roles to the project. Figure 2-12
shows Visual Studio 2008 displaying a new project with two WebRoles and two WorkerRoles added.
The Windows Azure SDK (July 2009 CTP) added the capability to add more than one role of each type to
a Cloud Service. Each role is a separate Windows Azure CPU instance, so the minimum cost to run the
project in the cloud would be 4 × $0.12 = $0.48 per hour.

Figure 2-12: Visual Studio 2008’s New Project dialog overlaid with the New Cloud
Service Project dialog displaying a solution with four Cloud Service roles.

The Live Framework node appears in the New Project dialog’s Project Types pane only if you
install Windows Azure Tools for Visual Studio, Live Framework SDK, and Live Framework Tools.
Live Framework templates are Mesh-Enabled Web Application and Silverlight Mesh-Enabled Web
Application.

Clicking OK twice with the roles shown in Figure 2-12 opens a new solution with WebRole and Worker-
Role projects in Solution Explorer, as shown in Figure 2-13.

The solution’s Roles node contains items that point to each WebRole project, which provides the
ASP.NET UI for the application, and each WorkerRole for computing operations that don’t require a UI
or use the WebRole’s ASP.NET pages as its UI.

References for Cloud Service projects include the Microsoft.ServiceHosting.ServiceRuntime
namespace, which contains the classes listed in the following table:

35

Part I: Introducing the Windows Azure Platform

Figure 2-13: Solution Explorer
displaying the five projects added by
two WebRoles and two
WorkerRoles.

Class or Enum Description of Class or Enumeration

RoleEntryPoint Provides methods to manage the initialization, starting, and stopping of
a service, as well as for monitoring the health of the service

RoleException Raises an error when an invalid operation occurs within a role

RoleManager Provides methods to log messages and raise alerts, retrieve service
configuration settings, and return the location of the local storage
resource

RoleStatus An enumeration providing information about the current status of a
role: Healthy, NonExistent, Started, Starting, Stopped, Stopping, or
Unhealthy

36

Chapter 2: Understanding Windows Azure Platform Architecture

Web Cloud Services and Client Wrapper Class Libraries
Projects that use the WebRole template provide an ASP.NET Default.aspx web page as the starting point
for a default cloud application UI. Figure 2-14 shows the SampleWebCloudService project, which has a
single WebRole project, open in VS 2008.

This service incorporates a Common class library from the HelloFabric sample application to assist in
logging application problems. Application logs are the only practical means of debugging applications
running in the Cloud Fabric. To read logs, you must copy them to blobs with a feature provided by the
Developer portal.

The StorageClient sample project includes the sample StorageClient class library that provides, in
conjunction with the .NET Client Library for ADO.NET Data Services, Microsoft .NET wrapper classes
for HTTP operations on Azure Blob, Queue, and Table Storage Services. The sample project also includes
a console application that lets you test the library’s capabilities. The C# console application runs in the
Development Fabric with Development Storage. The WebCloudService project uses the StorageClient’s
table-related classes.

Figure 2-14: VS 2008 displaying the two default projects for a Web Cloud Service and the Common and
StorageClient wrapper class libraries.

37

Part I: Introducing the Windows Azure Platform

Taking Advantage of Auxiliary Cloud Services
The Windows Azure Platform incorporates three sets of auxiliary services .NET Services, SQL Azure
Database, and Live Services. Early CTPs of .NET Services and SQL Azure Database (SADB) required an
invitation code, which was valid for both services

The requirement for an invitation for a .NET Services account was lifted as of CTP 3, so go to the .NET
Services My Subscriptions page at http://bit.ly/e3knd (https://portal.ex.azure.microsoft.com/
View.aspx), click the Sign Up link to open the Create Solution page, assign a unique Solution Name (see
Figure 2-15), click the Create Solution button, and you’re good to go with .NET Services and SQL Azure
Database.

Figure 2-15: This Create New Solution page for .NET Services lets you create a service ‘‘solution’’ containing
one or more of the three .NET Services.

.NET Services
Microsoft .NET Services are a set of scalable, developer-oriented services that are hosted by Windows
Azure alongside Azure Storage Services in Microsoft data centers. .NET Services provide key
infrastructure components for cloud-based Web and Worker applications.

38

Chapter 2: Understanding Windows Azure Platform Architecture

.NET Access Control, Service Bus, and Workflow services take advantage of Web-standard Atom,
AtomPub, SOAP, WS-*, and HTTP protocols, so any application that has reliable Internet access
can use them and they’re compatible with other popular programming languages, such as Java
and Ruby. The MSDN Developer Center’s home page for .NET Services is http://bit.ly/bhAKT
(http://msdn.microsoft.com/en-us/azure/netservices.aspx.) The .NET Services – Technical
Discussions Forum is at http://bit.ly/V9TOj (http://social.msdn.microsoft.com/Forums/en-US/
netservices/threads/.)

The Microsoft .NET Services SDK (March 2009 CTP) provides class libraries, samples, and documentation
for building connected applications with the .NET platform. You can download Java and Ruby .NET
Services SDKs in addition to the .NET version from the .NET Services Developer Center page.

Access Control Services
Microsoft claims that Access Control Services (ACS) ‘‘provide an easy way to control web applications
and services while integrating with standards-based identity providers, including enterprise directories
and web identity systems such as Windows Live ID.’’ Service Bus Services rely on a claims-based identity
model for user authentication and role-based access control. The advantage of ACS is that you can write
a set of declarative rules that can transform incoming security claims into a claims-based, federated
identity to minimize developer effort. ACS relies on well-known user account stores, such as Live ID,
Active Directory, or other stores that support Atom, AtomPub, SOAP or WS-*, and HTTP protocols.

The Windows Azure Platform Portal provides the administrative UI for ACS. The .NET Access Control
Service page at http://bit.ly/Co8NG (www.microsoft.com/azure/accesscontrol.mspx) provides links
to additional ACS resources.

You can learn more about ACS from these documents:

❑ ‘‘Microsoft .NET Access Control Service’’ help topic of the MSDN Library at http://bit.ly/
17IjY (http://go.microsoft.com/fwlink/?LinkID=131222.)

❑ The Introduction to Microsoft .NET Access Control.docx file and ‘‘A Developer’s Guide
to the Microsoft .NET Access Control Service’’ from the Download White Papers link on
http://bit.ly/bhAKT (http://msdn.microsoft.com/en-us/azure/netservices.aspx.)

Chapter 6, ‘‘Authenticating and Authorizing Service Users,’’ includes sections that describe how to secure
a WebRole application and Chapter 9, ‘‘Authenticating Users with .NET Access Control Services’’ is
devoted to ACS.

Service Bus
Microsoft states that the .NET Service Bus (SB), which was originally known as BizTalk Services, ‘‘makes
it easy to connect applications together over the Internet. Services that register on the Bus can easily
be discovered and accessed, across any network topology.’’ SB implements that Enterprise Service Bus
(ESB) application pattern with Windows Communication Foundation (WCF). However, it reduces the
programming effort ordinarily required to configure and code SaaS projects that use WCF to create
bidirectional connectivity between the cloud and on-premises applications. When a new service connects
to the bus all other applications and services on the bus can connect with it, even if they could not connect
directly with one another. SBS provides a centralized and load-balanced relay service that supports
industry-standard transport protocols and web services standards, including SOAP, SOAP, and WS-*.

39

Part I: Introducing the Windows Azure Platform

The .NET Services SDK (March 2009 CTP) added Service Bus Queues (SBQs) and Routers (SBRs), which
are discoverable, persisted SB objects that are independent of listeners’ lifetimes. Like the other .NET
Services, the basic API takes advantage of HTTP GET and POST methods and AtomPub extensions to
define SBQs, which are a lightweight version of Queue Storage Services. SBRs forward messages from
one or more publishers to one or more subscribers to create a pub/sub messaging model with optional
multicasting to all subscribers. Publishers send messages using HTTP, HTTPS, or the SB’s ‘‘NetOneway’’
protocol as plain HTTP messages or SOAP 1.1/1.2 envelopes. Subscribers can subscribe to a Router
either using a NetOnewayBinding listener or listen to any publicly reachable HTTP endpoint. Chapter 11,
‘‘Exploring .NET Workflow Services and Service Bus Queues and Routers’’ provides detailed information
about and sample programs for SBQs and SBRs.

Following are additional sources of information about SBS:

❑ ‘‘Microsoft .NET Service Bus’’ help topic of the MSDN Library at http://bit.ly/9timH
(http://msdn.microsoft.com/en-us/library/dd129877.aspx).

❑ The Introduction to Microsoft .NET Service Bus.docx file and ‘‘A Developer’s Guide to the
Microsoft .NET Service Bus’’ from the Download White Papers link on http://bit.ly/bhAKT
(http://msdn.microsoft.com/en-us/azure/netservices.aspx).

Chapter 10, ‘‘Interconnecting Services with the .NET Service Bus’’ covers SBS exclusively.

Workflow Services
Microsoft describes the .NET Workflow Services (WFS) as ‘‘a high-scale host for running workflows in the
cloud.’’ WFS orchestrates the sending, receiving, and manipulating of HTTP and Service Bus messages. It
also provides hosted tools to deploy, manage, and track the execution of workflow instances, as well as a
group of management APIs. You can construct workflows declaratively with WFS and the Visual Studio
2008 Workflow Designer.

You can learn more about WFS from these documents:

❑ ‘‘Microsoft .NET Workflow Service’’ help topic of the MSDN Library at http://bit.ly/3gaCF
(http://msdn.microsoft.com/en-us/library/dd129879.aspx).

❑ The Introduction to Microsoft .NET Workflow Service.docx file and ‘‘A Developer’s
Guide to the Microsoft .NET Workflow Service’’ from the Download White Papers link on
http://bit.ly/bhAKT (http://msdn.microsoft.com/en-us/azure/netservices.aspx.)

The electronic version of Chapter 11 (available from Wrox Website for this book, at www.wrox.com) will
detail the development of a simple Cloud Sequential Workflow solution after .NET 4 releases to manu-
facturing and the .NET Services team provides a CTP with the new Workflow runtime implemented.

SQL Azure
SQL Services are highly scalable, on-demand relational database management, business intelligence
(BI), and reporting utility services based provided by SQL Server 2008 and later. SQL Server Integration
Services (SSIS), SQL Analysis Services (SSAS) and Reporting Services (SSRS) were scheduled for
implementation in 2010 when this book was written.

SQL Data Services and SQL Azure Database (SADB)
SQL Azure Database (SADB) was originally called SQL Server Data Services (SSDS) when Microsoft
announced SSDS as a standalone Database as a Service (DaaS) at the MIX08 conference in early 2008.

40

Chapter 2: Understanding Windows Azure Platform Architecture

SSDS’s initial architecture implemented schemaless EAV tables similar to Azure’s Table Services in a
non-relational Authority, Container, Entity (ACE) model. The SSDS team believed that potential Azure
adopters wanted the simplicity of the EAV model rather than the relational features of SQL Server tables
and other database objects. Microsoft had trumpeted the capability to leverage .NET and Visual Stu-
dio skills with the Windows Azure Platform. Therefore, .NET developers testing SSDS wanted a fully
scalable, highly available version of SQL Server for the cloud.

In advance of Microsoft’s Professional Developers Conference (PDC) in late October 2008, Amazon Web
Services announced on September 20, 2008 support by Elastic Computing Cloud (EC2) for Windows
Server 2003 R2 and the Express and Standard editions of SQL Server 2005 (http://bit.ly/yXPPi.) This
new offering resulted in an even greater hue and cry by.NET developers for ‘‘SQL Server in the cloud’’
with full support for Transact-SQL and SQL Server datatypes.

The SSDS team ultimately saw the error of their ways and decided in early 2008 to abandon schemaless
databases and the EAV model. First news about the change in direction came at the MSDN Developer
Conference’s visit to San Francisco on February 23, 2009 in conjunction with 1105 Media’s Visual Stu-
dio Live! conference at the Hyatt Regency (see ‘‘A Mid-Course Correction for SQL Azure Database’’ at
http://bit.ly/85YOa, http://oakleafblog.blogspot.com/2009/02/mid-course-correction-for-
sql-data.html.) The newly named SQL Azure Database (SADB) team revealed more SADB details in
March 2009 with presentations at MIX ‘09 and in May at Tech*Ed 2009 (see ‘‘Ten Slides from the ‘What’s
New in Microsoft SQL Azure Database’ (DAT202) Tech*Ed 2009 Session’’ at http://bit.ly/nPLUB,
http://oakleafblog.blogspot.com/2009/05/ten-slides-from-whats-new-in-microsoft.html .)

According to Microsoft SADB evangelist David Robinson’s May 6, 2009 presentation to Microsoft’s
Enterprise Developer and Solutions Conference, SADB will offer the following SQL Server
features:

❑ Tables, indexes, and views

❑ Stored procedures and triggers

❑ Constraints

❑ Table variables

❑ Session temporary tables (#t)

The following features will be out-of-scope for v1:

❑ Distributed transactions

❑ Distributed queries

❑ CLR support

❑ Service Broker

❑ Spatial data types

❑ Physical server access or catalog DDL and views

David Robinson is this book’s technical editor.

SADB hadn’t been released as a public CTP when this book went to press, so the two SADB chapters
are available for download from the book’s page at www.wrox.com: Chapter 12, ‘‘Managing SQL Azure
Accounts, Databases, and DataHubs’’ and Chapter 13, ‘‘Exploiting SQL Azure Database’ Relational
Features.’’

41

Part I: Introducing the Windows Azure Platform

Obtaining an SADB v1 Private CTP Account
To obtain an invitation to the SADB v1 private CTP, click the Join the Mailing List link (http://bit.ly/
YDtQJ, go.microsoft.com/fwlink/?LinkID=149681&clcid=0x09) on the SADB SQL Azure Database
(SADB) page (http://bit.ly/VdpIn, http://msdn.microsoft.com/en-us/sqlserver/dataservices/
default.aspx), which takes you to a Microsoft Connect page, and complete the survey. If you completed
a survey for an SSDS account with your currently active Windows Live ID, the original survey (read-only)
opens; in this case, the SADB team states that you’ll receive an invitation automatically.

SSDS beta accounts aren’t valid for SADB v1 databases.

Deploying Applications and Services
to the Azure Cloud

One of the primary benefits of the Windows Azure Platform is the ease of deployment of applications
you create with the Development Storage and Fabric services to Azure (cloud) services. Most cloud
applications and services will require access to data, persisted state, or both as tables, blobs, or queues.
Most highly scalable applications will require similarly scalable data.

When you create a data-intensive application, it’s likely that your application will include code to enable
importing data from traditional sources, such as on-premises or online databases, image files, web pages,
productivity application documents, or all of these data types, to Azure Storage Services. For example,
the OakLeaf Systems Azure Blob Services Test Harness sample application contains code to import sets
of specific image (*.bmp) and archive (*.zip) files stored in Windows Live SkyDrive public folders or any
file from the client’s file system to Azure Blobs.

The OakLeaf Systems Azure Table Services Sample Project contains object initialization code to generate
entities that emulate the Northwind Customers table’s records.

Azure Storage Services
Changing from Development to Azure cloud storage requires only modifying the ServiceConfiguration
.cscfg to change the AccountName value to the cloud storage project name and change the
BlogStorageEndpoint, QueueStorageEndpoint, TableStorageEndpoing or all three values to http://
blob.core.windows.net, http://queue.core.windows.net, or http://table.core.windows.net, as
illustrated in the earlier ‘‘Azure Service Definition and Service Configuration Files’’ section. An original
and at least two copies of all data stored in the cloud assure data reliability and continuity.

The preceding paragraph assumes that your application can upload appropriate data to or generate data
in the cloud.

Publishing Projects to the Azure Services Developer Portal
When you create a new hosting project in the online Windows Azure Development Portal, Windows
Azure assigns it a GUID as a Private Deployment ID. Prior to the May 2009 CTP, Windows Azure also
assigned a unique 16-character hexadecimal Application ID, such as 000000004C002F22. Previously, you

42

Chapter 2: Understanding Windows Azure Platform Architecture

would find that value in the Live Services and Active Directory Federation section of the Summary page
for your hosted project, as shown in Figure 2-16.

Windows Azure runs hosted projects in Staging mode for private testing with a GUID as part of the
IP and lets you migrate a staged project to Production mode with a single click, as described in the next
section. This migration technique supports Azure’s rolling upgrade process, which eliminates downtime
when repairing or upgrading applications or services if you have more than one instance available.

Figure 2-16: An early version of the Azure Services Developer Portal’s Summary page for a hosted project
displayed the Application ID number.

You could synchronize your Visual Studio development project with the live version by opening the
Properties window for the master project node and selecting the Portal Provisioning page to expose the
Application ID text box. You could copy the ID value from the portal page and paste it to the Portal
properties page’s text box, as shown in Figure 2-17. When this book was written, the Azure Team was
planning a workaround to provide a substitute for the Application ID link between VS 2008 and the
Azure cloud instance.

43

Part I: Introducing the Windows Azure Platform

Figure 2-17: The Application ID from the Azure Services Developer Portal’s
Summary page pasted into the project’s Portal properties page’s
Application ID page.

The following table describes the purpose of the three other properties pages:

Page Purpose

Build Events Enables specifying Azure-specific pre-build and post-build events, and when to run
the post-build event

Development Lets you specify the Development Storage database name and if you want to start
Development Storage Services when you run the application from Visual Studio

SSL Enables selecting Secure Sockets Layer (SSL) for Development Storage and
publishing operations

Publishing the Project to the Cloud Fabric
Publishing the project requires copying a package (ProjectName.cspkg) and a configuration file
(*ServiceConfiguration.cscfg) to your Windows Azure instance. A package for the cloud consists of a
zipped and encrypted version of the development package file (*.csx) created when you run the project
in the Development Fabric.

With the Application ID pasted into the Portal properties page, right-clicking the master project node and
choosing Publish opens an Explorer window for the project’s . . . \bin\Debug\Publish folder that displays

44

Chapter 2: Understanding Windows Azure Platform Architecture

the ProjectName.cspkg and ServiceConfiguration.cscfg files, and Windows Azure’s Staging Deployment
page (see Figure 2-18).

You can use the same label for the Staging and Production versions of a project, but different labels are
recommended for clarity.

Figure 2-18: Deploying a hosted Azure project from the Development Fabric to the Cloud Fabric’s Staging
service requires specifying package and configuration files, typing a label for the project, and clicking the
Deploy button.

After a few minutes or longer, depending on your project’s package size and Internet connectivity, the
Staging WebRole will be Allocated. Click Run to place the project in the Started mode. (see Figure 2-19).

45

Part I: Introducing the Windows Azure Platform

Clicking Configure lets you edit the ServiceConfiguration.cscfg file or import a replacement. For example,
you can increase or decrease the number of instances deployed by changing the Instance count value.
Microsoft recommends running two instances of your projects to assure maximum availability, even with
light traffic.

Figure 2-19: After deploying your project to the Staging service, click Run to place it in the Started role and
then click the Web Site URL link to test it under the Windows OS operating system.

Click Run to instantiate the project in Staging mode, which starts an Initializing WebRole, and after a
minute or two, place the Staging project in the Started WebRole. Click the Staging Private Web Site URL
link to test the WebRole in your browser (see Figure 2-20).

Exchange the Staging for the Production version by clicking the button between the two package
icons and clicking OK when you’re asked ‘‘Are you sure you want to swap with the production
deployment?’’

Suspend Staging instances after placing them in production to avoid incurring running time charges on
both Staging and Production instances when Microsoft releases Windows Azure.

46

Chapter 2: Understanding Windows Azure Platform Architecture

Figure 2-20: A staging deployment of the OakLeaf Azure Blob Services Test Project at a hidden URL of
http://b9c10b0d715d4812a9e13bbcde538947.cloudapp.net/.

Summary
Microsoft introduced in late October 2008 the Windows Azure cloud operating system and other services
provided by the Windows Azure Platform at the Professional Developers Conference (PDC) 2008.
Windows Azure, which runs in Microsoft’s rapidly expanding collection of data centers, competes
directly with Amazon Web Services and the Google App Engine. The Azure team designed the systems
and APIs to leverage .NET developers experience with C#, VB, and Visual Studio 2008 and later.

Windows Azure was in a private Community Technical Preview stage when this book was written, so
those wanting access to Microsoft’s cloud operating system required GUID tokens or invitation codes
that were redeemable for Azure Hosted Projects, Azure Storage Projects, .NET Services, SQL Azure
Database, or Windows Live Services. The Byzantine process for obtaining most Azure tokens starts
at Microsoft Connect, but often requires intervention by Microsoft representative in Windows Azure
forums. Windows Live ID provides authentication and authorization of Azure CTP users.

47

Part I: Introducing the Windows Azure Platform

If you don’t have the required tokens and invitations for cloud computing, you can test drive projects,
blobs, queues, and tables destined for hosting by Windows Azure by downloading and installing the
Windows Azure and .NET Services SDKs, which contain documentation and sample projects that you
can run under the Development Fabric with Development Storage on a PC running Windows Vista or
Windows Server 2008. Taking advantage of SADB, which currently is available in the cloud only, requires
an invitation that includes a username and password.

Azure Storage Services persist structured or semi-structured data as entity-attribute-value tables, files of
varying content types as blobs, and messages between projects as queues. The official API for managing
the storage services is based on platform-agnostic REST and invokes HTTP GET, POST, PUT, MERGE,
and DELETE methods. .NET Services deliver Access Control, Message Bus, and Workflow components
to enterprise-grade projects that need these capabilities. The Live Operating Environment provides
integration with Windows Live and Mesh services that target individual consumers.

In mid-2009 SQL Server Data Services underwent a dramatic migration from its original Account,
Container, Entity architecture to SQL Azure Database v1, also known as ‘‘SQL Server in the Cloud.’’
The new version implements all but a few SQL Server 2008 features and supports most Transact-SQL
commands. Subsequently the Azure Team renamed SDS as SQL Server Database. SADB was in the early
CTP stage when this book went to press, so the two chapters devoted to SADB are available for download
from the Wrox web site.

Microsoft’s Azure team designed the Internet-based Azure Services Developer Portal to make
provisioning of new Hosted Services and Storage Projects simple and quick. The Portal also manages
deployment of projects from the Development Storage and Fabric to Staging services for testing in the
cloud and one-click migration from Staging mode to Production.

48

Analyzing the Windows
Azure Operating System

Windows Azure is a ‘‘cloud layer’’ operating system that runs on thousands of Windows Server
2008 physical instances in Microsoft data centers. It’s not required that you know how the Azure
operating system (OS) works to develop and deploy applications or services to the Windows Azure
Platform. However, a basic understanding of Windows Azure’s architecture can aid you in design-
ing complex applications that take advantage of OS features to achieve maximum performance,
scalability, and security.

A Quick Tour of the Windows Azure OS
The data center’s physical servers run an advanced, custom version of Microsoft’s Hyper-V hyper-
visor technology that virtualizes the physical instances to deliver a clustered runtime fabric, called
the Azure Fabric Controller (FC), which handles application/service deployment, load balancing,
OS/data replication, and resource management. The FC deploys projects, adds instances automati-
cally to meet demand, manages project software upgrades, and handles server failures to maintain
project availability.

Early Azure CTPs don’t implement dynamic service instance management in response to changes in
demand. You specify the number of instances in the ServiceConfiguration.cscfg file and then redeploy
the modified file to the project in the Azure Service Portal.

The host virtual machine (host VM) controls access to the hardware of the physical server and
supports multiple guest VMs in a multitenanted environment. Guest VMs (tenants) access physical
server resources through the host VM. Early Community Technical Previews (CTPs) allocated to
each guest VM the resources described in the following table:

The later ‘‘Virtualizing Windows Servers’’ section describes Windows Azure’s virtualization process
in greater detail.

Part I: Introducing the Windows Azure Platform

Resource Description Resource Allocation

Host and guest operating system 64-bit Windows Server 2008

Central processing unit 1.5–1.7 GHz, 1 core x64 equivalent

RAM 1.7GB

Network connectivity 100Mbs

Transient local storage 250GB (not persistent)

Windows Azure Storage 50GB (persistent and replicated)

Roles are runnable components of an application; role instances run on the fabric’s nodes and channels
connect roles. WebRole instances accept HTTP or HTTPS requests via Internet Information Services (IIS) 7
and respond with an ASP.NET, ASP.NET MVC, or Silverlight UI. WorkerRoles provide batch computing
services in response to request messages received from WebRoles or .NET Services in Azure Queues.
Each WebRole or WorkerRole is assigned to its own guest VM and server core to isolate the tenant’s
data, as shown in Figure 3-1.

WorkerRoles can’t accept inbound connections from external networks so they must use Azure Queues
to communicate with WebRoles or .NET Services. WorkerRoles can send outbound messages on the
external network.

Network

App 1 Load Balancer

Azure Fabric

Agent Agent

Outbound Messages

IIS 7

Ho
st

 V
M

Gu
es

t V
M

s
On

 V
M

Bu
s

Qu
eu

esWebRole
Instance

WorkerRole
Instance

Figure 3-1: Three WebRole instances and three
WorkerRole instances deployed by Azure to two physical
servers with FC agents to manage load balancing for each
set of instances.

According to Erick Smith’s ‘‘Under the Hood: Inside the Cloud Computing Hosting Environment’’ (ES19)
presentation to the Microsoft Professional Developer Conference (PDC) 2009 (http://bit.ly/16xSNH,

50

Chapter 3: Analyzing the Windows Azure Operating System

http://channel9.msdn.com/pdc2008/ES19/) , the FC maintains a graph of the inventory of physical and
virtual machines, load balancers, routers, and switches it manages in a Microsoft data center. Edges of
the graph are interconnections of various types; for example, network, serial, and power cables. The
developer specifies with a declarative service model the topology of the service — the number and
connectivity of roles, the attributes and locations of the various hardware components, as well as the
quantity of fault/update domains and maximum instances of each role required. Smith says, ‘‘The FC
manages the service lifecycle from the bare metal.’’ Windows Azure’s management features are similar
to those employed by the Google App Engine (GAE) for its web applications and offered by RightScale
for Amazon Web Services (AWS); as noted in earlier chapters, GAE and AWS are Azure’s primary
competitors.

Azure CTP’s limit projects to a maximum of 2,000 runtime instance-hours with up to eight instances
of a single production application as well as one Web and, optionally, one WorkerRole in a single
fault and update domain. Testers can request exemptions from these limits by sending mail to
azquotas@microsoft.com.

Early CTPs limited applications to running managed .NET 3.5 code under a custom version of ASP.NET’s
medium trust Code Access Security (CAS). Microsoft promises future support for Python, Ruby, PHP,
native code, and Eclipse tools. The May 2009 CTP introduced the option to run applications in full
trust.

Azure fault domains for role instances represent a single point of failure, such as a rack; update domains
for performing rolling software upgrades; or patches run across multiple fault domains (see Figure 3-2).
Ultimately, you’ll be able to specify your Service Model with Oslo’s domain-specific language tools and
store the model in the Oslo repository.

The initial CTP released at PDC 2008 didn’t expose the Service Model; instead the Windows Azure Tools
for Microsoft Visual Studio add-in contributes common Azure application-role templates for WebRole,
WorkerRole, and Workflow, as described in Chapter 2.

The Lifecycle of a Windows Azure Service
The Windows Azure infrastructure consists of physical nodes provided by individual servers or virtual
machines (VMs) running on servers. Figure 3-3 shows the relationships between physical nodes and
logical roles, and the services they host.

Figures 3-3 through 3-5 are based on PDC 2008’s ‘‘Under the Hood: Inside the Cloud Computing Host-
ing Environment’’ session.

Constraints on logical nodes, roles, and services include

❑ Only roles from a single service can be assigned to a node.

❑ Only a single instance of a role can be assigned to a node.

❑ A node must contain a compatible hosting environment.

❑ A node must have enough resources available to run a logical service.

❑ Nodes for a service must be located in an appropriate fault domain.

❑ Nodes must be healthy to host logical services.

51

Part I: Introducing the Windows Azure Platform

Mast
er

Replica 1

Replica 2Master

Replica 1

Replica 2

Racks of Virtual and Physical Machines (Fault Domains) in Data Centers

Upgrade Domains

Azure Dev. Portal

Hyper-V Hypervisor

W
indow

s Server 2008

Internet

RoutersSwitchesLoad
Balancers

X-Copy Application Deployment

Azure Fabric Controller App. Role 4

App. Role 3

App. Role 2

App. Role 1

App. Role 3 Data

App. Role 1 Data

Windows Server 2008

Virtual
Machine

Virtual
Machine

Virtual
Machine

Figure 3-2: Fault domains consist of physical servers that share common hardware, such as a
rack of servers. Azure stores a master and a minimum of two replica copies of all data for
reliability. Upgrade domains consist of a group of servers from multiple fault domains.

Logical
Node

Logical
Role

Instance

Logical
Role

Logical
Service

Physical
Node

Role
Instance

Description

Role
Description

Service Model

Service
Description

Figure 3-3: The data structures that the FC uses to create a logical node, logical
role instance, logical role, and logical service on a virtual physical node. The
Service Model contributes the descriptions to the process.

52

Chapter 3: Analyzing the Windows Azure Operating System

Creating the Host VM and the First Guest VM
on a Physical Server

When you add a Production instance of a new project and no uncommitted guest VMs are available to
run its role(s), the Azure FC Agent boots an available physical server by downloading a maintenance
operating system (MOS), which connects to the FC. The FC instructs the MOS’s agent to create a partition
for the host OS, load a virtual hard disk (VHD) OS, and restart the physical server. On initial startup, the
server boots from the VHD OS, loads a guest OS image for the first guest VM, creates a copy of the guest
OS image to add more guest VMs, and deploys a Customer Role to the first guest VM. The FC Agent
then configures the infrastructure for the server and its VMs, such as load balancers, external (dedicated)
and internal (virtual) IP addresses, switches, and routers. Redundant network components provide high
reliability and availability.

The process of adding new VMs is wrapped in a transaction. If any operation in the process fails, all
previous operations are rolled back. According to the Azure Team, the FC is implemented ‘‘mostly by
managed code.’’

Adding Guest VMs to a Host VM
If the new project’s ServiceConfiguration.cscfg file’s <Instances count="n"> element has a number
greater than 1 or the FC Agent has detected an impending inability of existing instances to handle increas-
ing load, the FC Agent notifies the AFC to add another guest VM. The host VM copies the local guest OS
image to create a new guest VM, which receives the appropriate Customer Role. The FC Agent repeats
the process of configuring the infrastructure for new VMs. New guest VMs for a particular Customer
Role ordinarily are added to physical servers in different Fault Domains.

All provisioning and deprovisioning operations occur in parallel throughout the data center to enable
rapid response to demand fluctuations, hardware failures, or both. Early CTPs don’t automate dynamic
VM allocation and logical role instance addition or deletion. Future releases will support specifying
minimum and maximum numbers for role instances.

Maintaining Role Instance Health
The FC is responsible for keeping services running by inspecting their state and adding or removing role
instances. Following are the primary FC responsibilities for maintaining service availability:

❑ The FC maintains a state machine for each node.

❑ A Role Instance Description determines a node’s goal state.

❑ Internal or external events cause nodes to move to a different state.

❑ The FC maintains a cache of last state of each node.

❑ Load balancers probe the nodes to determine that each is operable and reports failures to the FC.

❑ The FC Agent reconciles the cached and actual state in response to heartbeat events.

❑ If the actual and goal states differ, on heartbeat events the FC Agent attempts to move the node
closer to its goal state.

❑ The FC detects when the node reaches its goal state.

53

Part I: Introducing the Windows Azure Platform

❑ If a failed node goes offline, the FC attempts to recover it.

❑ If the FC can’t recover a failed node, it finds or creates a suitable replacement on other hardware
and notifies other role instances of the configuration change.

Service state isn’t maintained when a node fails. If saving the state of a failed logical role instance
is important, your application should periodically persist the state, such as a cache, to Azure tables
or blobs.

Upgrading Service Software and Windows Azure
Rolling service software upgrades and patches to the Windows Azure OS take place within transactions
on running services in one Upgrade Domain at a time. The FC deploys resources to all nodes of the
Upgrade Domain in parallel, so all updated services in the Upgrade Domain go offline temporarily
during the upgrade while new logical role instances bind to physical nodes. The number of upgrade
domains determines the service loss percentage during the upgrade, which usually occurs very quickly.
Minimizing the upgrade’s performance impact requires a substantial number of Upgrade Domains; this
implies many role instances for each service.

Service software upgrades are automatic when you move the upgraded project from Staging to
Production; some server upgrades and patches require intervention by data center personnel.

Securing and Isolating Services and Data
In the late 1990s and even into the first five years or so of the twenty-first century, enterprise IT depart-
ments had the power to deny ordinary workers access to the Internet from the organizations’ networks.
In many cases the restriction even applied to top management. IT managers simply said that the threat to
network security and data privacy presented an outrageous risk to the organizations’ survival. Executive
managers, having witnessed repeated compromise of sensitive data by hackers, accepted the IT gurus’
judgment at face value. Branch offices connected to central data centers by T-1 or slower lines leased
from telcos at considerable expense. Mobile users were more hampered by the speed limitations of dial-
up connections to branch or home offices. IT departments’ focus was on perimeter security to ‘‘keep the
bad guys out’’ of the corporate network by using stringent Network Access Control (NAC) parameters.
Preventing office workers from connecting to the Internet with the organization’s intranet led to many
surreptitious dial-up connections and network hacks that managed to stay below the IT departments’
radar for long periods.

According to Forrester Research, ‘‘NAC is a mix of hardware and software technology that dynamically
controls client system access to networks based on their compliance with policy.’’

The need to accommodate an increasingly mobile sales force, support telecommuting employees, and
acquiesce to on-premises workers’ demands for high-speed Internet access to business-related informa-
tion gradually overcame IT departments’ nay-saying. Firewalls that permitted users and their applica-
tions to connect to the Internet with a limited number of open TCP ports provided the illusion of security
to IT and corporate management. Firewalls enabled SaaS customer relationship management (CRM)
applications, such as Salesforce.com, and third-party SOAP-based web services to thrive. Today very
few sizable organizations exist whose internal network isn’t connected, knowingly or unwittingly, to the
Internet.

54

Chapter 3: Analyzing the Windows Azure Operating System

Reliance on Cloud-Computing Vendors’ Security Claims
Surveys of potential cloud-computing adopters indicate that lack of security is a primary deterrent to
moving at least a part of an organizations’ computing and data storage operations to the cloud. The
February 2009 ‘‘Above the Clouds: A Berkeley View of Cloud Computing’’ whitepaper by a team from
the University of California – Berkeley’s Reliable Adaptive Distributed (RAD) Systems Laboratory
(http://bit.ly/iSOer, http://d1smfj0g31qzek.cloudfront.net/abovetheclouds.pdf) list the fol-
lowing as the first three of the ‘‘Top 10 Obstacles for Growth of Cloud Computing’’:

1. Availability of Service

2. Data Lock-In

3. Data Confidentiality and Auditability

Most IT departments currently view that allowing services to be delivered by third parties means they
lose control over how data is secured, audited, and maintained and they can’t enforce what they can’t
control. However, James Niccolai of IDG News Service writes in a ‘‘Cloud security fears are overblown,
some say’’ article of February 19, 2009 (http://bit.ly/C12ll, http://oakleafblog.blogspot.com/
2009/02/security-issues-receive-main-focus-at.html):

It may sound like heresy to say it, but it’s possible to worry a little too much about
security in cloud computing environments, speakers at IDC’s Cloud Computing
Forum said on Wednesday.

Security is the No. 1 concern cited by IT managers when they think about cloud
deployments, followed by performance, availability, and the ability to integrate cloud
services with in-house IT, according to IDC’s research.

’’I think a lot of security objections to the cloud are emotional in nature, it’s reflexive,’’
said Joseph Tobolski, director for cloud computing at Accenture, [a global manage-
ment consulting, technology services and outsourcing company]. ‘‘Some people create
a list of requirements for security in the cloud that they don’t even have for their own
data center.’’

The key to acceptance of third-party security, auditing, and maintenance of customers’ data in the cloud
is transparency. Cloud-computing vendors, such as Microsoft, must fully detail their security-related
practices and incorporate guaranteed levels of data security, auditing, availability, and reliability in their
service-level agreements (SLAs.)

Microsoft’s Charlie McNerney announced that ‘‘Microsoft’s cloud infrastructure achieved both
Statement of Auditing Standards (SAS) 70 Type I and Type II attestations and ISO/IEC 27001:2005
certification’’ for their data centers in his Securing Microsoft’s Cloud Infrastructure post of 5/27/2009
(http://bit.ly/VeAWD, http://blogs.technet.com/gfs/archive/2009/05/27/securing-
microsoft-s-cloud-infrastructure.aspx). Chapter 5, ‘‘Minimizing Risk When Moving To
Azure Cloud Services,’’ describes SAS 70 and ISO/IEC 27001:2005 requirements and the significance of
the attestations and certifications.

Microsoft announced its SLA for Windows Azure, SQL Azure and .NET Services in mid-July 2009
(http://bit.ly/16lKsY, www.microsoft.com/azure/pricing.mspx)

55

Part I: Introducing the Windows Azure Platform

Isolating Private Data of Multiple Tenants
Security for applications’ data against access by unauthorized users from other organizations using
the same service is one of the most important incentives for adopting virtualization in cloud comput-
ing by independent software vendors (ISVs). Windows Azure implements some multitenant computing
also called multitenancy features. Wikipedia describes the features as follows (http://bit.ly/bbgGH,
http://en.wikipedia.org/wiki/Multi-tenant):

Multitenancy refers to a principle in software architecture where a single instance of
the software runs on a software-as-a-service (SaaS) vendor’s servers, serving multi-
ple client organizations (tenants). Multitenancy is contrasted with a multi-instance
architecture where separate software instances (or hardware systems) are set up for
different client organizations. With a multitenant architecture, a software applica-
tion is designed to virtually partition its data and configuration so that each client
organization works with a customized virtual application instance.

Gianpaulo Carrara, a Microsoft architect who works with Azure, introduced the problem with multiple
tenants’ comingled data in his ‘‘Multi-Tenancy, metadata driven everything and you are my #1 customer’’
blog post of February 26, 2006 (http://bit.ly/gbmKG, http://blogs.msdn.com/gianpaolo/archive/
2006/02/26/539717.aspx):

In a pure multi-tenant architecture a single instance of the hosted application is capa-
ble of servicing all customers (tenants). Unlike more classical web applications or web
services ‘‘in the cloud’’ which behave the same way for each requests, a multi-tenant
architecture is designed to allow tenant-specific configurations at the UI (branding),
business rules, business processes and data model layers. This is has to be enabled
without changing the code as the same code is shared by all tenants, therefore trans-
forming customization of software into configuration of software. As you can imagine,
this drives the clear need for ‘‘metadata driven everything.’’ The other main challenge
is being able to co-locate (mingle and ‘‘de-mingle’’) persistent data of multiple tenants
in the same data infrastructure.

In other words, the challenge for the multi-tenant application is to behave as if it was
fully dedicated to a single tenant but is actually serving all of them in parallel on the
same code base. I call this ‘‘you are my #1 customer’’ approach; which means every
customer believes they are the #1 customer but in reality they are all served by a
talented customer rep.

The main advantage of this architecture is (at least) twofold (a) the underlying infras-
tructure is shared, allowing massive economy of scale with optimal repartition of load
and (b) because the very costly infrastructure and application development costs are
shared, the ‘‘enterprise grade’’ application can be offered to very small businesses as
well, permitting [it] to address the long tail of the market.

Carraro’s ‘‘Software + Services for Architects’’ webcast (http://bit.ly/1addvS, http://msdn
.microsoft.com/en-us/architecture/aa699384.aspx) of July 2008 discusses the control of SLA
trade-offs between ‘‘do it yourself’’ and adopting a Software + Services approach with private and
public cloud computing.

In early 2008 Eugenio Pace, another Microsoft architect, wrote a multitenant ASP.NET project with SQL
Server Data Services (SSDS), the predecessor of SQL Azure Database (SADB), substituted for

56

Chapter 3: Analyzing the Windows Azure Operating System

SQL Server 200x as the data source. Pace’s five-part ‘‘Litware HR on SSDS’’ tutorial blog posts, which
began in March 2008, describes how a conventional (not cloud) multitenanted Web application can
implement generic, multitenant data access with cloud S[S]DS data storage. The tutorial ends with an
11-minute ‘‘End to end demo of LitwareHR on SSDS’’ (http://bit.ly/7BHKI, http://blogs.msdn.com/
eugeniop/archive/2008/04/27/end-to-end-demo-of-litwarehr-on-ssds.aspx), which demonstrates
customizing and using an individual tenant site that has a dedicated S[S]DS container for data storage.

Designing a multitenant Azure application isn’t an intuitive process, because the ServiceConfigura-
tion.cscfg file for an Azure Hosted Service specifies the storage service and number of instances. When
this book was written Microsoft had not provided official architectural guidance for writing multitenant
projects to run on Windows Azure.

Assuring Fabric Controller Availability
The Azure FC is a high-availability failover cluster of replicas running on five to seven machines, each of
which runs a simplified core version of the Azure OS.

The FC cluster implements

❑ Replicated state with automated failover

❑ Seamless transition to a new primary FC node from a failed primary or secondary FC node

❑ Service continuation when all FC replicas fail

❑ Rolling cluster software upgrades from a ‘‘root FC’’ utility, which also manages the cluster

Figure 3-4 is a diagram of an FC cluster with two secondary FC nodes (three fewer than the minimum).

Disk

Client Logical Node

Replication System

Disk

Object Model

FC Core

Object Model

FC Core

Disk

Object Model

FC Core

Secondary FC Node Secondary FC NodePrimary FC Node

Figure 3-4: A diagram of an Azure Fiber Controller with a primary and two secondary FC
nodes.

Following are descriptions of the components shown in Figure 3-4:

❑ FC Core runs the heartbeat, state machine, and resolver for resource allocation constraint
problems.

57

Part I: Introducing the Windows Azure Platform

❑ Object Model provides the logic for implementing roles and services.

❑ Replication system is dedicated to the FCs and is distributed across all FCs.

❑ Disks are partitions of the system disk for a machine running an FC cluster member.

Vir tualizing Windows Servers for Azure
The objective of server virtualization is to maximize server utilization, which often is less than 50 percent
in many of today’s data centers. Utilization would be expected to decrease as the use of commodity server
hardware becomes more common were it not for server virtualization. Multitenancy enables improving
performance per dollar and per watt by running multiple applications and services on a single physical
server. Initial VMs of Azure CTPs have a designated CPU core; therefore the maximum number of VMs
created from a physical server is the number of CPU cores –1; the host partition also requires a core.)

Figure 3-5 illustrates the components of Windows Server 2008’s Hyper-V hypervisor v1; Azure runs five
to seven guest partitions in a server cluster.

ServicesServices

Guest OS
(Server

Enterprise)

Guest OS
(Server

Enterprise)

Shared Memory

[Disk 2]Disk 1HardwareCPUsNICs

VMBus VMBus VMBusHardware
Drivers

Virtualization Stack
(VSP) Virtualization

Stack
(VSC)

Virtualization
Stack
(VSC)

Host OS
(Server Core)

Microsoft Hyper-V Hypervisor
Host Partition Guest Partition Guest Partition

Figure 3-5: A diagram of Microsoft’s Hyper-V hypervisor v1 with one host VM and two of
five to seven guest VMs.

58

Chapter 3: Analyzing the Windows Azure Operating System

Following are descriptions of the components shown in Figure 3-5:

❑ Host partition, also called the parent partition, is dedicated to running the Host OS. In
Hyper-V v1, the host partition is the root (boot) partition and there can be only one host
partition.

❑ Host OS is a lightweight server operating system (Windows Server 2008 Core for Azure) controls
access to the hardware of the underlying server, and provides a mechanism for other guest VMs
(where our customers applications are deployed) to safely communicate with the outside world.

❑ Guest partitions, also called child partitions, are created and owned by the host OS and are dedi-
cated to running guest OSes.

❑ Guest OS is a server operating system for applications and services (Windows Server 2008 Enter-
prise with IIS 7, .NET Fx 3.5, and other extensions for Azure).

❑ Services are custom-written (Azure) applications and services that run on the guest OS.

❑ Virtualization Stack (VSP, virtualization service provider) is a provider exposed by the virtualiza-
tion stack that provides resources or services such as I/O to a child partition.

❑ Virtualization Stack (VSC, virtualization service client or consumer) is a software module that a
guest loads to consume a resource or service. For I/O devices, the virtualization service client
can be a device driver that the operating system kernel loads.

❑ VMBus is a shared-memory I/O bus that enables high-performance communication
between VMs.

❑ NICs are physical network interface card(s).

❑ CPUs are physical central processing units, which have one or usually more cores.

❑ Disk(s) are the physical fixed disk(s) for the root and guest partitions.

The home page for Hyper-V is http://bit.ly/DnJtW, www.microsoft.com/virtualization/
default.mspx.

Deploying the Azure Hypervisor in Non-Microsoft
Data Centers

IT and general management has serious reservations about cloud-based application and service lock-in
to a single vendor and the difficulty or impossibility of deploying applications, services, data, or all three
on multiple Platform as a Service (PaaS) or Infrastructure as a Service (IaaS) clouds. For example, GAE
supports Python as its only programming language. AWS supports Windows Server 2003 and probably
will accommodate Windows Server 2008 in the future, but you can’t emulate multitenanting of server
instances without an appropriate hypervisor. The Azure hypervisor is a Microsoft internal-only product,
as is the FC, so moving a project from Azure to AWS requires major modifications to the underlying
source code and deployment methodology. Migrating large amounts of data from one vendor’s cloud to
another is even more challenging.

Reuven Cohen started a Cloud Computing Interoperability Forum Google Group (http://bit.ly/
DBcJQ, http://groups.google.com/group/cloudforum) to ‘‘define an organization that would
enable interoperable enterprise-class cloud computing platforms through application integration and
stakeholder cooperation.’’

59

Part I: Introducing the Windows Azure Platform

In late January 2009 Hoi Vo, a director on Microsoft’s Cloud Infrastructure Services (Azure) team, wrote
a blog post (http://bit.ly/pfQSu, http://blogs.msdn.com/windowsazure/archive/2009/01/29/
design-principles-behind-the-windows-azure-hypervisor.aspx) that listed the three principles of
the Windows Azure hypervisor’s design:

1. Efficient: Push work to hardware as much as possible. Any percentage gain once multiplied
to tens of thousands of machines will be very significant for us. Consequently we can bet on
new processor features to save CPU cycles for the hosted application.

2. Small footprint: Any features not applicable to our specific cloud scenarios are removed. This
guarantees that we do not have to worry about updating or fixing unnecessary code, mean-
ing less churning or required reboots for the host. All critical code paths are also highly
optimized for our Windows Azure scenarios.

3. Tight integration: The Windows Azure hypervisor is tightly optimized with the Windows
Azure kernel. This is required to achieve the level of scalability and performance we want
for our stack.

Vo states that because the Azure hypervisor is optimized for the data center’s standard server hardware
design, it isn’t suitable for deployment outside of Microsoft data centers. However, performance-
improving features of the Azure hypervisor, such as Second-Level Address Translation (SLAT) will find
their way into future Hyper-V releases.

Summary
The Windows Azure operating system is based on Windows Server 2008 Enterprise Edition running
on a Fabric Controller that’s created by a customized version of Microsoft’s Hyper-V hypervisor. The
Azure Fabric provides each Hosted Service with a minimum of one core of the server’s CPU, 1.7GB
RAM, 100Mbs network connectivity, 250GB of transient storage, which doesn’t persist during reboot,
and an Azure Storage Service account with 50GB persistent storage in early Community Technical Pre-
views. Hosted Services will be able to request and obtain additional resources and service instances at a
surcharge in the release version.

The FC handles application/service deployment, load balancing, OS/data replication, and resource
management. It also deploys projects, and in the release version, will add instances automatically to meet
demand, manage project software upgrades, and handle server failures to maintain project availability.
The FC assigns each role to its own virtual machine; role instances run on the fabric’s nodes and chan-
nels connect roles. WebRole instances accept HTTP or HTTPS requests and respond with an ASP.NET,
ASP.NET MVC, or Silverlight UI. WorkerRoles provide batch computing services in response to request
messages received from WebRoles or .NET Services in Azure Queues. The FC runs on a high-availability
cluster of five to seven servers to assure maximum reliability.

Services and storage are deployed to Failure Domains whose members have a common point of fail-
ure. Storage occupies master nodes, which are replicated to at least two other nodes in different Failure
Domains. Rolling service software upgrades and patches to the Windows Azure OS take place on run-
ning services in a single Upgrade Domain at a time. The FC deploys resources to all nodes of the Upgrade
Domain in parallel, so all updated services in the Upgrade Domain go offline temporarily during the
upgrade.

60

Chapter 3: Analyzing the Windows Azure Operating System

Concerns about security and availability are uppermost in management’s reservations about moving
on-premises computing and data storage to the cloud. Application and storage security rely on the
cloud’s data center components, which are likely to provide greater resistance to attacks and unautho-
rized access than most premises data centers. Cloud vendors must provide service-level agreements that
dispel potential customers’ doubts about migrating to cloud computing and data storage.

Cloud vendor lock-in is another issue facing IT departments considering public cloud computing.
Platforms as a Service, such as the Windows Azure Platform, has a higher lock-in quotient than
Infrastructure as a Service, typified by Amazon Web Services’ EC2, because Microsoft doesn’t offer the
customized Azure hypervisor for use on-premises. The Windows Azure SDK’s Development Fabric isn’t
intended for high-reliability production deployment on intranets.

61

Scaling Azure Table and
Blob Storage

Achieving high scalability requires cloud-based applications and services to be stateless so as not
to rely on the data center’s load balancing devices or software to route successive requests from a
specific client to a particular logical node. However, most applications and services require access to
data persisted in tables that share some characteristics of relational database tables, as well as indi-
vidual binary large objects (blobs) for storing unstructured data such as images and text documents.

Azure Storage Services consist of highly scalable and available persistent storage for the following
three types of data:

❑ Tables are structured tabular data stored in an Entity-Attribute-Value (EAV) data model;
the maximum size of all attribute values of an entity is 1MB. Entities can be grouped into
storage partitions, which are maintained in a single location.

❑ Blobs consist of unstructured file-based data stored in an array of bytes; containers store sets
of individual blobs up to 50GB in size in hierarchical groups, which emulate a directory
structure. Only blob containers and their content are available for public access.

❑ Queues contain an unlimited number of messages stored in tables for processing by global
services (often Worker Cloud services); messages have a maximum size of 8KB. Messages
usually are deleted after the process that reads them handles them. Queues are the subject
of Chapter 8, ‘‘Messaging with Azure Queues.’’

To assure availability and reliability, all stored data consists of a master and two or more replicas
stored on different Fault Domains. When Microsoft makes the Azure Services Platform available for
general use, data can be replicated to multiple data centers to assure access in the event of a data
center’s destruction.

SQL Azure Database (SADB, formerly SQL Data Services, SDS, and SQL Server Data Services,
SSDS) is an alternative to Azure Tables that offers many features of relational tables. Microsoft
charges a premium for SADB storage and network ingress/egress traffic. SADB is the subject
of Chapter 12, ‘‘Managing SQL Azure Database Accounts, Databases and DataHubs,’’ and 13,
‘‘Exploiting SQL Azure Database’ Relational Features.’’

Part I: Introducing the Windows Azure Platform

Creating Storage Accounts
Early Azure CTPs provided testers with two Storage Accounts with each Hosted Service account. A single
Storage Account provides a separate URI for tables, blobs, and queues. When you receive a token GUID
as the result of a request to sign up for an Azure beta account and create a Hosted Service account as
described in Chapter 2’s ‘‘The Windows Azure Developer Portal’’ section, the token enables you to create
two Storage Accounts with different prefix names.

Create the First Storage Account with a Hosted
Service Token

To create a Storage Account with a token, click the Account tab and its Manage My Tokens link to open
the Tokens page, copy and paste the token GUID into the Resource Token ID text box, and click Claim
Token to add a Compute Only bucket for the GUID to the Gated Entity’s Storage Accounts group, as
shown in Figure 4-1.

Figure 4-1: The Azure Developer Portal’s Tokens page with the initial Storage Account for a Hosted Service
token.

64

Chapter 4: Scaling Azure Table and Blob Storage

Clicking the Claim Token and Continue buttons opens the My Projects page. Click the Project Name
link to open the project page and click the New Service link to open the Project | Create a new service
component page with choices for Storage Account and Hosted Services (see Figure 4-2).

Figure 4-2: Clicking the Tokens Page’s Claim Token button with a token valid for the first Storage Account
leads to the Project page.

The Storage Account selection displays the number of Storage Accounts available (project(s) remaining)
for the Hosted Service tokens you’ve redeemed. Click the Storage Account icon to open the Create a
Project – Project Properties page. Type a unique Project Label and add a Project Description as shown in
Figure 4-3.

Click the Next button to open the Create a Project – Storage Account page, add a unique Service Name
DNS prefix consisting of lowercase letters and numerals, and click the Check Availability button to
ensure the prefix is globally unique for Storage Accounts within all Azure data centers). To keep data in
the same data center as the related hosted service, mark the ‘‘Yes, this service is related...’’ and ‘‘Create
a new Affinity Group’’ buttons, select from the list of available data centers (regions) and type a name
for the region in the text box (see Figure 4-4.) When this book was written, only the USA - Northwest
(Quincy, WA) and USA - Southwest (San Antonio, TX) data centers were active.

65

Part I: Introducing the Windows Azure Platform

Figure 4-3: Assigning a unique Project Label to a new blob Storage Account in the Create a Project – Project
Properties page.

Click Create to generate the new Storage Account and open the Service Name page, which displays
an http://dns_prefix.data_type.core.windows.net endpoint for each of the three data types
and displays Primary Access Key and Secondary Access Key values for the three endpoints (see
Figure 4-5.)

Keep the Primary Access Key and Secondary Access Key values confidential because either of the two
keys permits access to your storage services when added to the ServiceConfiguration.cscfg file.

Create an Additional Storage Account with a Hosted
Service Token

To create the second Storage Account for a Hosted Service, click the New Project link in the Development
Portal’s left panel to open the Project–Create a New Service Component page, which contains links for
new Storage Accounts (refer to Figure 4-2) and proceed with the steps shown in Figures 4-3 through 4-5.

66

Chapter 4: Scaling Azure Table and Blob Storage

Figure 4-4: Assigning a globally unique prefix for a new blob Storage Account in the Create a Project –
Storage Account page.

Using or Wrapping the Azure Storage
Services’ REST APIs

You don’t need to use a Hosted Service to take advantage of Azure’s scalable storage features. In
fact, you can access Storage Accounts and their data with any popular computer language, such as PHP,
Python, IronPython, Ruby, IronRuby, Java, C#, or Visual Basic, that’s capable of interacting with web
resources by invoking HTTP’s GET, POST, PUT, and other standard methods. Azure Storage Services
provides official Representational State Transfer (REST) APIs for the Storage Account and each storage
type. REST methods create, retrieve, update, or delete resources that are identified by Uniform Resource
Identifiers (URIs). As you’ll see in the sections that follow, using the official REST APIs directly requires
passing many HTTP header value strings to System.Net.HttpWebRequest methods and parsing header
strings returned in System.Net.HttpWebRequest objects.

Programming with ‘‘magic strings’’ rather than CLR objects is contrary to .NET’s strongly typed object-
oriented methodology. Therefore, Azure Tables support a restricted feature set of the .NET Client

67

Part I: Introducing the Windows Azure Platform

Library for ADO.NET Data Services (formerly code-named and still called Astoria) to access data in
Table Storage with queries composed with the LINQ to REST dialect that return .NET collections. SQL
Azure Database (SADB) also supports and Astoria interface. Astoria uses the Atom Syndication Format
(www.ietf.org/rfc/rfc4287.txt) for table data retrieval and the Atom Publishing Protocol (AtomPub,
www.ietf.org/rfc/rfc5023.txt) for table insertions, updates, and deletions, as mentioned in Chapter 2.

Figure 4-5: The last (Service Name) page in the process of creating a Storage Account.

Using Fiddler2 to Display HTTP Request and Response
Headers and Content

A logging tool that captures HTTP header and body traffic between an Azure project running in the
Development Fabric and Azure Data Storage’s production data stores is essential for debugging data
manipulation code. The examples in this book use IE 7 and the Fiddler2 proxy for monitoring and
debugging data access code. According to its developer, Eric Lawrence (a member of Microsoft’s Internet
Explorer team):

Fiddler is a Web Debugging Proxy which logs all HTTP(S) traffic between your
computer and the Internet. Fiddler lets you inspect HTTP(S) traffic, set breakpoints,

68

Chapter 4: Scaling Azure Table and Blob Storage

and ‘‘fiddle’’ with incoming or outgoing data. Fiddler includes a powerful event-based
scripting subsystem, and can be extended using any .NET language. Fiddler is free-
ware and can debug traffic from virtually any application, including Internet Explorer,
Mozilla Firefox, Opera, and thousands more.

Fiddler isn’t a Microsoft product but two Internet Explorer Development Technical Articles are available
for it: ‘‘Fiddler PowerToy – Part 1: HTTP Debugging’’ (http://bit.ly/zZJjz, http://msdn.microsoft
.com/en-us/library/bb250446.aspx,) and ‘‘Fiddler PowerToy – Part 2: HTTP Performance’’
(http://bit.ly/H9dAD, http://msdn.microsoft.com/en-us/library/bb250442.aspx). You can
download Fiddler2, which enables fiddling with HTTPS and requires .NET 2.0 or later, at no charge
from http://bit.ly/6qKe, www.fiddler2.com/Fiddler2/version.asp. Running the installation
program adds a Fiddler2 choice to IE’s Tools menu; choosing Fiddler2 opens the application in its own
window.

Figure 4-6 shows Fiddler2 capturing HTTP request and response headers for a MERGE request to add a
plus symbol (+) to the CompanyName property value of a Customer entity in an Azure CompanyName
table.

The Entity is the unit of Azure Tables, so changing a property value requires replacing all property
values rather than updating only the property (attribute) value(s) that changed. Entities don’t support
projections; GET operations return — and POST or PUT operations create — complete entities only.

To capture packets between your computer and Azure Storage Services running in the Microsoft Data
Center, you must run your Azure project on the local Development Fabric. Specify production Data
Services(s) in the project’s ServiceConfiguration.cscfg file, as described in Chapter 2’s ‘‘Azure Service
Definition and Service Configuration Files’’ section, with entries similar to these:

<Setting name="AccountName" value="oakleaf"/>
<Setting name="AccountSharedKey" value="3elV1nddZEYv...Coc0AMQA==" />
<Setting name="BlobStorageEndpoint" value="http://blob.core.windows.net" />
<Setting name="QueueStorageEndpoint" value="http://queue.core.windows.net" />
<Setting name="TableStorageEndpoint" value="http://table.core.windows.net" />

Fiddler doesn’t support capturing packets to or from the loopback (localhost) address,
http://127.0.0.1, directly. To enable local packet logging, add a period after the IP address,
as in the following: http://127.0.0.1.:8000.Default.aspx.

Click the buttons at the bottom left of the window to turn on Capturing and All Processes, shown empha-
sized in Figure 4-6. Click RAW to view HTTP request headers and request body, if applicable, in the
Inspectors page’s upper window; the lower window displays response headers and the response body,
if applicable. The + symbol added to the entity made by the HTTP MERGE method is emphasized at the
bottom of Figure 4-6’s upper-right window.

Fiddler2’s Request Builder window lets you create custom HTTP requests and, if you mark the Inspect
Session check box, view the response headers and the response body, if applicable. Dragging a session
item from the Web Sessions list to the upper-right window clones the original request when you click
Execute, as shown in Figure 4-7.

Chapter 2’s ‘‘Azure Table Services’’ section describes the composite primary key for entities, which con-
sists of string PartitionKey and RowKey values. For example, if you replace MERGE with the GET method

69

Part I: Introducing the Windows Azure Platform

and remove the If-Match header, the http://oakleaf.table.core.windows.net/CustomerTable
(PartitionKey=’Customer’,RowKey=’ALFKI’) URL returns the Alfreds Futterkiste entity. The
http://oakleaf.table.core.windows.net/CustomerTable()?$top=5 URL returns the first five Cus-
tomerTable entities and http://oakleaf.table.core.windows.net/CustomerTable()?(PartitionKey
=’Customer’,Country=’Germany’) returns all Customer entities in Germany.

Figure 4-6: Fiddler2 capturing HTTP packets for a MERGE Table update from the SampleWebCloudService
project.

C# Wrappers for RESTful Storage and Authentication
Operations

The Azure team provides a set of C# wrappers for RESTful storage and authentication operations in the
StorageClient.dll class library that you create from files in the \StorageClient folder of the \Program

70

Chapter 4: Scaling Azure Table and Blob Storage

Files\Windows Azure SDK\v1.0\Sample.zip file. The StorageClient library includes the class files
shown in the following table:

Microsoft classifies the C# wrappers for Azure Data Service’s REST API as ‘‘high-level .NET wrappers,’’
not members of an official Microsoft API. This means there is no guarantee that future versions of these
wrappers will be version-compatible with previous versions. If you’re using Visual Studio 2008+ to
write projects that access Azure Storage Services, you should copy these files to your project’s folder and
include them in a StorageClient.dll class library. The following sections contain more details about the
wrapper classes contained in the preceding files.

Figure 4-7: Cloning the MERGE Table update shown in Figure 4-6 with Fiddler2’s Request Builder.

The following sections provide examples of the use of Astoria and REST wrapper classes for CRUD
operations on Azure Table, Blob, and Queue services.

71

Part I: Introducing the Windows Azure Platform

Class File Description

Authentication.cs Provides classes to support user authentication and authorization for
Storage Services

BlobStorage.cs Provides classes for accessing containers and their blob contents

Errors.cs Provides error code enumerations and storage-side exceptions with HTTP
response codes

Queue.cs Provides QueueStorage and Message classes and related event handlers

RestBlobStorage.cs Overrides BlobStorage classes with REST wrappers

RestHelpers.cs Defines constants for REST requests and parameters, query parameters,
XML element names, header names, and regular expressions for validating
container and table names

RestQueue.cs Overrides Queue classes with REST wrappers

StorageAccountInfo.cs Provides StorageAccountInfo methods for retrieving and working with
Storage Accounts

TableStorage.cs Provides helper classes for accessing the Table Storage Service

Understanding Azure Table Storage
Chapter 2’s ‘‘Azure Table Services’’ section provides an introduction to Azure’s structured and semi-
structured data storage capabilities. The TableStorage.cs file includes source code for the classes shown
in the following table.

Figures 4-8, 4-9, and 4-10 are VS 2008 class diagrams for the classes contained in the TableStorage.cs
file. These class diagrams are included in the \WROX\Azure\Chapter04\SampleWebCloudService\
StorageClient\TableStorageDiagram.cd file.

The sample code in the following sections is based on Jim Nakashima’s ‘‘Windows Azure Walkthrough:
Simple Table Storage’’ blog post of October 28, 2008 (http://bit.ly/g6c8z, http://blogs.msdn
.com/jnak/archive/2008/10/28/walkthrough-simple-table-storage.aspx).

Creating a New Table If the Table Doesn’t Exist with Code
When a Web or Worker Cloud Service session that requires access to a table starts, the Global
class’s Application_BeginRequest event handler invokes the FirstRequestInitialization class’s
Initialize() method, which in turn invokes the ApplicationStartUponFirstRequest() method.

72

Chapter 4: Scaling Azure Table and Blob Storage

This method executes the StorageAccountInfo.GetDefaultTableStorageFromConfiguration() and
TableStorage.CreateTablesFromModel() methods to generate the table from its class definition if it
doesn’t exist. Listing 4-1 is code from the Global.asax.cs file that makes sure that the methods are called
only once per session at application startup:

Development Storage doesn’t support creating tables dynamically from project code. Instead you must
right-click the Cloud Service and select the Create Test Storage Tables command to create the SQL Server
Express tables by reflection.

Class Description

TableStorage The entry point for Azure’s structured or semi-structured
storage API. TableStorage objects provide methods for
creating, listing, and deleting tables.

TableStorageTable Creates a table with a specified name.

TableStorageEntity Adds an entity with specified PartitionKey and RowKey
values.

TableStorageDataServiceQuery Defines a query that can handle continuation tokens for
paging results.

TableStorageDataServiceContext Creates a DataServiceContext object for a table with
security information (AccountName and SharedKey).

TableStorageHelpers Contains error-handling helpers and methods for testing
whether properties can be inserted into a table.

ContextRef A helper class to avoid long-lived references to context
objects.

TableRetryWrapperException A wrapper for StorageClient and StorageServer
exceptions indicating retries are needed.

ParameterValidator Throws an ArgumentException if the parameter is null or
zero-length.

TableStorageConstants Contains constants for testing properties, table names and
table queries.

DataServiceUtilities Support special requirements of ADO.NET Data Services
conventions.

73

Part I: Introducing the Windows Azure Platform

Figure 4-8: TableStorage, TableStorageDataServiceContext, and
TableStorageDataServiceQuery class diagrams.

Figure 4-9: TableStorageTable, TableStorageEntity, ContextRef, and
TableRetryWrapperException class diagrams.

74

Chapter 4: Scaling Azure Table and Blob Storage

Figure 4-10: TableStorageHelpers, ParameterValidator,
TableStorageConstants, and DataServiceUtilities class diagrams.

Listing 4-1: Creating the CustomerTable if it doesn’t exist in Azure Storage
(Global.asax.cs)

namespace SampleWebCloudService_WebRole
{

public class Global : System.Web.HttpApplication
{

void Application_BeginRequest(object sender, EventArgs e)
{

HttpApplication app = (HttpApplication)sender;
HttpContext context = app.Context;

// Attempt to perform first request initialization
FirstRequestInitialization.Initialize(context);

}

class FirstRequestInitialization
{

private static bool s_InitializedAlready = false;
private static Object s_lock = new Object();

// Initialize only on the first request
public static void Initialize(HttpContext context)
{

if (s_InitializedAlready)
{

return;
}

lock (s_lock)

Continued

75

Part I: Introducing the Windows Azure Platform

Listing 4-1: Creating the CustomerTable if it doesn’t exist in Azure Storage
(Global.asax.cs) (continued)

{
if (s_InitializedAlready)
{

return;
}

ApplicationStartUponFirstRequest(context);
s_InitializedAlready = true;

}
}

}

private static void ApplicationStartUponFirstRequest(HttpContext context)
{

// Make sure the tables exist before we use them.
StorageAccountInfo account =

StorageAccountInfo.GetDefaultTableStorageAccountFromConfiguration();
TableStorage.CreateTablesFromModel(typeof(CustomerDataServiceContext),

account);
}

}
}

For more detailed information about the preceding code, see the ‘‘Azure Storage Services Test Harness:
Table Services 7 – Testing for Table Existence at App Startup Only’’ blog post (http://bit.ly/
16iS6b, http://oakleafblog.blogspot.com/2008/11/azure-storage-services-test-
harness_231.html). Invoking this method consumes substantial resources, so it’s important not to
execute it more than once per session.

The Customers.cs class file contains the code for the model, which creates the table from the
CustomerDataModel class that implements IQueryable<T>. The class’s default constructor accepts a
GUID as the RowKey value and assigns the class name to PartitionKey; the parameterized constructor
accepts PartitionKey and RowKey string values to create the composite primary key.

Any class that implements IQueryable<T> is a candidate source for the CreateTablesFromModel()
method. The TableStorage class reflects over the following listing’s CustomerDataServiceContext class
and creates a table for each IQueryable<T> property. The table’s entities have properties generated from
the IQueryable<T>’s type T. Listing 4-2 is code in the Customers.cs file that creates the CustomerTable
and CustomerDataService objects.

Listing 4-2: Creating the CustomerTable if it doesn’t exist in Azure Storage
(Customers.cs)

namespace SampleWebCloudService_WebRole

#region CustomerDataModel class generated by LIMOG v2
public class CustomerDataModel : TableStorageEntity
{

// Default parameterless constructor

76

Chapter 4: Scaling Azure Table and Blob Storage

public CustomerDataModel()
: base()

{
RowKey = Guid.NewGuid().ToString();
PartitionKey = "CustomerDataModel";

}
// Partial parameterized constructor
public CustomerDataModel(string partitionKey, string rowKey)

: base(partitionKey, rowKey)
{
}

public string CustomerID { get; set; }
public string CompanyName { get; set; }
public string ContactName { get; set; }
public string ContactTitle { get; set; }
public string Address { get; set; }
public string City { get; set; }
public string Region { get; set; }
public string PostalCode { get; set; }
public string Country { get; set; }
public string Phone { get; set; }
public string Fax { get; set; }

}
#endregion
#region EntityNameDataServiceContext (implementing IQueryable generates table)
internal class CustomerDataServiceContext : TableStorageDataServiceContext
{

internal CustomerDataServiceContext(StorageAccountInfo accountInfo)
: base(accountInfo)

{
}

internal const string CustomerTableName = "CustomerTable";

public IQueryable<CustomerDataModel> CustomerTable
{

get
{

return this.CreateQuery<CustomerDataModel>(CustomerTableName);
}

}

public class CustomerDataSource
{

private CustomerDataServiceContext serviceContext = null;

public CustomerDataSource()
{

// Get the settings from the Service Configuration file
StorageAccountInfo account =

StorageAccountInfo.GetDefaultTableStorageAccountFromConfiguration();

Continued

77

Part I: Introducing the Windows Azure Platform

Listing 4-2: Creating the CustomerTable if it doesn’t exist in Azure Storage
(Customers.cs) (continued)

// Create tables for public properties that implement IQueryable
TableStorage.CreateTablesFromModel(typeof(CustomerDataServiceContext)

, account);

// Create the service context to query against
serviceContext = new CustomerDataServiceContext(account);
serviceContext.RetryPolicy =

RetryPolicies.RetryN(3, TimeSpan.FromSeconds(1));
}

public IEnumerable<CustomerDataModel> Select()
{

// Page.Prerender event-handler populates GridView
// This method is required for ObjectDataSource
return null;

}

public void Delete(CustomerDataModel itemToDelete)
{

serviceContext.AttachTo(CustomerDataServiceContext.
CustomerTableName, itemToDelete, "*");

serviceContext.DeleteObject(itemToDelete);
serviceContext.SaveChanges();

}

public void Insert(CustomerDataModel newItem)
{

serviceContext.AddObject(CustomerDataServiceContext.
CustomerTableName, newItem);

serviceContext.SaveChanges();
}

}
}
#endregion

}

The CreateTablesFromModel() method adds the PartitionKey, RowKey, and Timestamp properties
(attributes) to those specified by the class’s properties.

As noted in Chapter 2, Azure Tables support properties having the following .NET data types shown in
the following table:

Data Type Description

Binary Array of bytes up to 64KB in size

Bool Boolean value

DateTime 64-bit value expressed as UTC time ranging from 1/1/1600 to 12/31/9999

78

Chapter 4: Scaling Azure Table and Blob Storage

Data Type Description

Double 64-bit floating point value

GUID 128-bit globally unique identifier

Int 32-bit integer

Long 64-bit integer

String UTF-16-encoded value up to 64KB in size

Creating a New Table If the Table Doesn’t Exist
with the HTTP POST Method

In Listing 4-3 are the HTTP header and AtomPub-formatted body of the POST request captured by Fid-
dler2 upon generation by Listings 4-1 and 4-2 when starting the WebRole or WorkerRole.

Listing 4-3: HTTP POST request to create a new CustomerTable if it doesn’t exist

POST /Tables HTTP/1.1
User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Thu, 26 Feb 2009 22:03:42 GMT
Authorization: SharedKeyLite oakleaf:i8WF7XrpHgB9IYHM7EBcTqUCgI9XSFLjaDJhuMtVQMg=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx
Content-Type: application/atom+xml
Host: oakleaf.table.core.windows.net
Content-Length: 499
Expect: 100-continue
Connection: Keep-Alive

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">

<title />
<updated>2009-02-26T22:03:42.2336961Z</updated>
<author>
<name />

</author>
<id />
<content type="application/xml">
<m:properties>

<d:TableName>CustomerTable</d:TableName>
</m:properties>

</content>
</entry>

79

Part I: Introducing the Windows Azure Platform

All three Azure data service types utilize SharedKey authorization, but Azure Tables accept an alter-
native SharedKeyLite authorization format from code such as .NET wrappers that employ the .NET
Client Library for ADO.NET Data Services. To prevent unauthorized access to the Primary or Secondary
Authorization Key value, code creates SharedKey and SharedKeyLite values by creating a string value
from the request headers encoded by a Hash-based Method Authentication Code using the SHA-256
hash algorithm (HMAC-SHA256, http://msdn.microsoft.com/en-us/library/system.security
.cryptography.hmacsha256.aspx). The StorageClient class library’s Authentication.cs file contains
code to generate the key values.

Listing 4-4 is the HTTP POST response header and HTTP 409 error body in AtomPub format returned
when the table exists.

Listing 4-4: HTTP POST response if the CustomerTable already exists

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">

<title />
<updated>2009-02-26T22:03:42.2336961Z</updated>
<author>
<name />

</author>
<id />
<content type="application/xml">
<m:properties>

<d:TableName>CustomerTable</d:TableName>
</m:properties>

</content>
</entry>

HTTP/1.1 409 The table specified already exists.
Cache-Control: no-cache
Content-Length: 258
Content-Type: application/xml
Server: Table Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 16e8aa5c-f37c-4333-a543-cac68628c739
Date: Thu, 26 Feb 2009 22:02:03 GMT

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<error xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata">

<code>TableAlreadyExists</code>
<message xml:lang="en-US">The table specified already exists.</message>

</error>

Adding Entities to a Table
Uploading data from on-premises relational database tables to Azure Tables is one of the primary
tasks that IT organizations face when moving to cloud data storage. When this book was written, there
were no Microsoft-supported utilities, such as SQL Server Integration Services (SSIS) packages, for
uploading tables to Azure Tables. Therefore cloud application developers are likely to need to write their
own Web or WorkerRoles for uploading and validating tabular data. Figure 4-11 shows the Sample-
WebCloudService project running from a production deployment to the first OakLeaf Hosted Service

80

Chapter 4: Scaling Azure Table and Blob Storage

(http://oakleaf.cloudapp.com) and initial Storage Service (http://oakleaf.table.core.windows
.net) with 91 customers loaded into the CustomerTable table as it appears after clicking the Count
Customers button to verify that 91 entities were added.

Figure 4-11: The Default.aspx page of the SampleWebCloudService Project when connected to Azure cloud
services.

Adding New Entities with Code
Listing 4-5 is the code from the Create Customers button’s Click event handler from the SampleWeb-
CloudService project. The btnCreateCustomers_Click() method adds 91 Northwind Customer entities
(rows) to the CustomerTable using the _Default class’s CreateCustomerListWithRowKey() function
from the LimogListFunctions.cs file.

Limog is an acronym for LINQ in-Memory Object Generator, a project from WROX’s Professional
ADO.NET 3.5 with LINQ and the Entity Framework book. You can learn more about Limog in the
‘‘Azure Storage Services Test Harness: Table Services 5 – Generating Classes/Collection Initializers with
LIMOG v2’’ blog post (http://bit.ly/RIJrs, http://oakleafblog.blogspot.com/2008/11/
azure-storage-services-test-harness_21.html).

81

Part I: Introducing the Windows Azure Platform

Listing 4-5: Code to add 91 entities from a Collection<T> to a table

namespace SampleWebCloudService_WebRole
{

public partial class _Default : System.Web.UI.Page
{

// Creates all CustomerTable entities individually from an object initializer
// Sets the customersView GridView’s DataSource
protected void btnCreateCustomers_Click(object sender, EventArgs e)
{

Stopwatch timer = new Stopwatch();
timer.Start();

List<CustomerDataModel> custDataModel = null;
if (chkRowKeyPK.Checked)

// Object initializer includes PartitionKey and RowKey values
custDataModel = CreateCustomerListWithRowKey();

else
// Use default constructor
custDataModel = CreateCustomerList();

foreach (CustomerDataModel newItem in custDataModel)
{

if (newItem.CustomerID == null)
newItem.CustomerID = newItem.RowKey;

serviceContext.AddObject(CustomerDataServiceContext.CustomerTableName
, newItem);

}
// Persist entities in the Azure Table
serviceContext.SaveChanges();
// Bind DataGridView to custDataModel
customersView.DataSource = null;
customersView.DataSourceID = "customerData";
customersView.DataBind();

txtTime.Text = (timer.ElapsedMilliseconds / 1000D).ToString("0.000");
btnCreateCustomers.Enabled = false;
btnUpdateCusts.Enabled = true;

}
}

}

The serviceContext.AddObject() method adds the current member of the custDataModel list to the
serviceContext. Invoking the serviceContext.SaveChanges() method saves the cached entities to
the CustomerTable.

If you need the equivalent of a relational JOIN, you must upload dependent records, such as the last
few orders for each customer and all order details for each order you upload. The Azure team promises
secondary indexes on entity values other than the primary key in a future version.

82

Chapter 4: Scaling Azure Table and Blob Storage

Adding a New Entity with the HTTP POST Method and AtomPub Body
Listing 4-6 is the HTTP POST request header and AtomPub body required to add the first of 91 Customer
entities to the CustomerTable:

Listing 4-6: HTTP POST request header and body to add a new CustomerTable entity

POST /CustomerTable HTTP/1.1
User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Thu, 26 Feb 2009 22:15:12 GMT
Authorization: SharedKeyLite oakleaf:yndp7wnZBl5nfHl39C9Yjd9lpetuGE3Q0Hr+3dArRNE=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx
Content-Type: application/atom+xml
Host: oakleaf.table.core.windows.net
Content-Length: 1083
Expect: 100-continue

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">

<title />
<updated>2009-02-26T22:15:12.8647523Z</updated>
<author>
<name />

</author>
<id />
<content type="application/xml">
<m:properties>

<d:Address>Obere Str. 57</d:Address>
<d:City>Berlin</d:City>
<d:CompanyName>Alfreds Futterkiste</d:CompanyName>
<d:ContactName>Maria Anders</d:ContactName>
<d:ContactTitle>Sales Representative</d:ContactTitle>
<d:Country>Germany</d:Country>
<d:CustomerID>ALFKI</d:CustomerID>
<d:Fax>030-0076545</d:Fax>
<d:PartitionKey>Customer</d:PartitionKey>
<d:Phone>030-0074321</d:Phone>
<d:PostalCode>12209</d:PostalCode>
<d:Region m:null="true" />
<d:RowKey>ALFKI</d:RowKey>
<d:Timestamp m:type="Edm.DateTime">0001-01-01T00:00:00</d:Timestamp>

</m:properties>
</content>

</entry>

The <entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http:
//schemas.microsoft.com/ado/2007/08/dataservices/metadata" xmlns="http://www.w3.org/

83

Part I: Introducing the Windows Azure Platform

2005/Atom"> element verifies that Azure Table Services is to use ADO.NET Data Services conventions,
such as the AtomPub format, to process the entity insert operation. The Timestamp property value
is the minimum DateTime value. Lack of a <feed> parent element indicates that the <entry> is a
singleton.

Listing 4-7 Is the HTTP POST response header and AtomPub body for the successful addition of a new
entity to the CustomerTable.

Listing 4-7: HTTP POST response after adding a new CustomerTable entity

Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/atom+xml;charset=utf-8
ETag: W/"datetime’2009-02-26T22%3A13%3A35.4152565Z’"
Location: http://oakleaf.table.core.windows.net/CustomerTable(PartitionKey=
’Customer’,
RowKey=’ALFKI’)
Server: Table Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 4da35e6c-6598-406c-aa45-856f1085fdd3
Date: Thu, 26 Feb 2009 22:13:34 GMT

5DB
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xml:base="http://oakleaf.table.core.windows.net/"

xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
m:etag="W/"datetime’2009-02-26T22%3A13%3A35.4152565Z’""
xmlns="http://www.w3.org/2005/Atom">

<id>http://oakleaf.table.core.windows.net/CustomerTable(PartitionKey=’Customer’,
RowKey=’ALFKI’)</id>

<title type="text"></title>
<updated>2009-02-26T22:13:35Z</updated>
<author>
<name />

</author>
<link rel="edit" title="CustomerTable"
href="CustomerTable(PartitionKey=’Customer’,RowKey=’ALFKI’)" />

<category term="oakleaf.CustomerTable"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

<content type="application/xml">
<m:properties>

<d:PartitionKey>Customer</d:PartitionKey>
<d:RowKey>ALFKI</d:RowKey>
<d:Timestamp m:type="Edm.DateTime">2009-02-26T22:13:35.4152565Z</d:Timestamp>
<d:Address>Obere Str. 57</d:Address>
<d:City>Berlin</d:City>
<d:CompanyName>Alfreds Futterkiste</d:CompanyName>
<d:ContactName>Maria Anders</d:ContactName>
<d:ContactTitle>Sales Representative</d:ContactTitle>
<d:Country>Germany</d:Country>
<d:CustomerID>ALFKI</d:CustomerID>
<d:Fax>030-0076545</d:Fax>
<d:Phone>030-0074321</d:Phone>
<d:PostalCode>12209</d:PostalCode>

84

Chapter 4: Scaling Azure Table and Blob Storage

</m:properties>
</content>

</entry>
0

The ETag header value is the Timestamp property value with colons (:) escaped; ETag header values are
compared with a Timestamp property value for concurrency conflict management.

Taking Advantage of Entity Group Transactions
The Windows Azure SDK (May 2009 CTP) introduced Entity Group Transactions (EGTs), which enable
transacted Insert Entity, Update Entity, Merge Entity, and Delete Entity operations on entities in the same
Entity Group. An Entity Group is a set of entities in the same Azure Table that have the same PartitionKey
value.

EGTs require specifying a new x-ms-version request header with a value of 2009-04-14 or later and
accept a maximum of 100 entities in a single ADO.NET Data Services client change set. The change set
also can contain a single query. Online help for EGTs is available at http://bit.ly/kfWtD, http://msdn
.microsoft.com/en-us/library/dd894038.aspx.

The May 2009 CTP version of the SDK’s development environment doesn’t support EGTs in Development
Storage. The May 2009 CTP’s implementation of the sample StorageClient wrapper doesn’t support
EGTs, so you can’t execute EGTs with conventional .NET code that uses StorageClient objects.

Steve Marx’s ‘‘Sample Code for Batch Transactions in Windows Azure Tables’’ post (http://bit.ly/
j2VXy, http://blog.smarx.com/posts/sample-code-for-batch-transactions-in-windows-
azure-tables) includes an updated StorageClient library and a simple test program to
demonstrate EGTs.

Querying for a Specific Entity or Entities
Querying probably will be the most common operation on production Azure Tables. The following
sections describe C# code and HTTP GET methods to return paged LINQ to REST query result sets and
display them in the SampleWebCloudService project’s GridView control.

Paging code is adapted from Steve Marx’s ‘‘Paging Over Data in Windows Azure Tables’’ November 12,
2008 blog post (http://bit.ly/bShh, http://blog.smarx.com/posts/paging-over-data-in-
windows-azure-tables).

Querying for Pages of Entities with Code
As mentioned earlier, ADO.NET Data Services clients use LINQ to REST syntax to generate the HTTP GET
method. LINQ to REST encodes query strings with a small subset of Astoria’s query options, operators,
and functions. The following table shows ADO.NET Data Services’ methods, properties, standard query
operators, comparison operators, and Boolean operators supported by LINQ to REST queries:

LINQ to REST is an unofficial abbreviation for LINQ to ADO.NET Data Services.

Conspicuous by their absence are Order By, Group By, Skip, and many other LINQ Standard Query
Operators. Select must return complete entities; as mentioned earlier, projections aren’t supported.

85

Part I: Introducing the Windows Azure Platform

Queries return a maximum of 1,000 items, so Take(1000) is the upper limit. NextPartitionKey and
NextRowKey property values provide the starting position for paging operations that apply the Take()
method. ADO.NET Data Services v1 doesn’t support aggregate functions, such as Count() or Sum().

Category Supported Methods, Properties, Query Operators,
or Comparison Operators

Data Service Query Methods AddQueryOption, BeginExecute, EndExecute, GetEnumerator.

Data Service Query Properties All ADO.NET DataServiceQuery properties are supported.

Standard Query Operators From, In, Where, Select (no projections), Take (with
limitations), First, FirstOrDefault.

Comparison Operators Equal, GreaterThan, GreaterThanOrEqual, LessThan,
LessThanOrEqual, NotEqual.

Boolean Operators And, AndAlso, Not, Or.

Listing 4-8 populates a 12-row GridView with pages of 12 or fewer Customer entities with code contained
in event handlers of the Default.aspx.cs code-behind file.

Listing 4-8: Code to populate the GridView with 12-entity pages

namespace SampleWebCloudService_WebRole
{

public partial class _Default : System.Web.UI.Page
{

// Used by multiple handlers
StorageAccountInfo account = null;
CustomerDataServiceContext serviceContext = null;
public bool skipPreRenderTime = false;

protected void Page_Load(object sender, EventArgs e)
{

// Get the StorageAccountInfo once
account =

StorageAccountInfo.GetDefaultTableStorageAccountFromConfiguration();
serviceContext = new CustomerDataServiceContext(account);
serviceContext.RetryPolicy =

RetryPolicies.RetryN(3, TimeSpan.FromSeconds(1));
}

protected void Page_Prerender(object sender, EventArgs e)
{

// This query gets a page of 12 customers at a time
Stopwatch timer = new Stopwatch();
timer.Start();

// Write a LINQ to REST query

86

Chapter 4: Scaling Azure Table and Blob Storage

int pageSize = 12;
var query = (DataServiceQuery<CustomerDataModel>)

(new
CustomerDataServiceContext(account).CustomerTable.Take(pageSize));

// Request a continuation token
var continuation = Request["ct"];
if (continuation != null)
{

// ct param looks like "<partitionKey>/<rowKey>"
string[] tokens = continuation.Split(’/’);
var partitionToken = tokens[0];
var rowToken = tokens[1];

// These become continuation token (ct) query parameters in the
request.

query = query.AddQueryOption("NextPartitionKey", partitionToken)
.AddQueryOption("NextRowKey", rowToken);

}
var result = query.Execute();

// Cast to a QueryOperationResponse and read the custom headers
var qor = (QueryOperationResponse)result;
string nextPartition = null;
string nextRow = null;
qor.Headers.TryGetValue("x-ms-continuation-NextPartitionKey",

out nextPartition);
qor.Headers.TryGetValue("x-ms-continuation-NextRowKey",

out nextRow);

if (nextPartition != null && nextRow != null)
{

nextLink.NavigateUrl = string.Format("?ct={0}/{1}", nextPartition,
nextRow);

txtNextPartitionKey.Text = nextPartition;
txtNextRowKey.Text = nextRow;
btnCreateCustomers.Enabled = false;
btnDeleteAll.Enabled = true;

}
else
{

txtNextPartitionKey.Text = null;
txtNextRowKey.Text = null;
nextLink.Visible = false;

}
// Change the customersView DataView’s DataSource to the query response
customersView.DataSourceID = null;
customersView.DataSource = result;
customersView.DataBind();

}
}

}

87

Part I: Introducing the Windows Azure Platform

The var query = (DataServiceQuery<CustomerDataModel>)(new CustomerDataServiceContext
(account).CustomerTable.Take(pageSize)); instruction is method syntax for the LINQ to REST
query, which returns a DataServiceQuery<CustomerDataModel> type that you must execute to retrieve
the entity collection. Cast the result to the QueryOperationResponse type, which supports continuation
tokens for paging.

The serviceContext.RetryPolicy = RetryPolicies.RetryN(3, TimeSpan.FromSeconds(1))
instruction specifies a maximum of three retries at one-second intervals to obtain the query result set.
The continuation variable holds two continuation tokens that contain the NextPartitionKey and
NextRowKey values to define the starting point for the next page of values. You must explicitly request
continuation tokens as named QueryOperationResponse.QueryOptions.

Querying for the Second Page of 12 Entities with the HTTP GET Method
Clicking the sample Default.aspx page’s Next Page link button fires another Page_Prerender event,
which executes a GET request that includes the NextPartitionKey and NextRowKey values in the query
string, as shown in Listing 4-9.

Listing 4-9: HTTP GET request for the second page of 12 CustomerTable entities

GET /CustomerTable()?$top=12 &NextPartitionKey=Customer&NextRowKey=CENTC HTTP/1.1
User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Thu, 26 Feb 2009 22:15:07 GMT
Authorization: SharedKeyLite oakleaf:htCsBgNfPtm0u+jY56ozC/pZqw6c/25j17CElzFjdoo=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx
Host: oakleaf.table.core.windows.net

Clicking the First Page link button resets the NextPartitionKey and NextRowKey values to null. If you
want to implement a Previous Page button, you must persist a last-in, first-out stack of NextRowKey values
in Global.asax.cs or ViewState and add appropriate code to pop the appropriate token.

Listing 4-10 shows the GET response for the second page with the continuation token values for the
third page.

Listing 4-10: HTTP GET response for the second page of 12 CustomerTable entities

HTTP/1.1 200 OK
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/atom+xml;charset=utf-8
Server: Table Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 8ff7440f-7419-40eb-9910-74e99602f666
x-ms-continuation-NextPartitionKey: Customer
x-ms-continuation-NextRowKey: FRANK
Date: Thu, 26 Feb 2009 22:13:29 GMT

200
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<feed xml:base="http://oakleaf.table.core.windows.net/"

88

Chapter 4: Scaling Azure Table and Blob Storage

xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">

<title type="text">CustomerTable</title>
<id>http://oakleaf.table.core.windows.net/CustomerTable</id>
<updated>2009-02-26T22:13:29Z</updated>
<link rel="self" title="CustomerTable" href="CustomerTable" />

</feed>

Querying for the First Eight Customer Entities Located in the USA
Listing 4-11 contains an example of a LINQ to REST expression that combines LINQ’s where and take()
Standard Query Qperators to retrieve the first eight Customer entities with USA as the Country property
value. The Page_Load event handler assigns the serviceContext instance.

Listing 4-11: Code to retrieve and display the first eight Customer entities in the USA

// Retrieve and display first eight Customer entities in the USA
var results = (from c in serviceContext.CustomerTable

where c.Country == "USA"
select c).Take(8);

TableStorageDataServiceQuery<CustomerDataModel> query =
new TableStorageDataServiceQuery<CustomerDataModel>

(results as DataServiceQuery<CustomerDataModel>);
IEnumerable<CustomerDataModel> result = query.ExecuteAllWithRetries();
customersView.DataSourceID = null;
customersView.DataSource = result;
customersView.DataBind();

Executing the preceding code generates the HTTP GET request and response of Listings 4-12
and 4-13. The following table describes the four Execute . . . () methods supported by
TableStorageDataServiceQuery objects:

Listing 4-12: HTTP GET request for the first eight Customer entities in the USA

GET /CustomerTable()?$filter=Country%20eq%20’USA’&$top=8 HTTP/1.1
User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Sun, 01 Mar 2009 18:10:19 GMT
Authorization: SharedKeyLite oakleaf:RzHMRAy/Hj/Dn/Z7UZKacAY2Y4LnVC6MMvOt7YF+Xtc=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx
Host: oakleaf.table.core.windows.net

URL encoding substitutes %20 for the space characters required to separate LINQ to REST comparison
operators and their arguments in query strings.

Listing 4-13: HTTP GET response for the request in Listing 4-12.

HTTP/1.1 200 OK
Cache-Control: no-cache

Continued

89

Part I: Introducing the Windows Azure Platform

Listing 4-13: HTTP GET response for the request in Listing 4-12. (continued)

Transfer-Encoding: chunked
Content-Type: application/atom+xml;charset=utf-8
Server: Table Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 2eb64479-9245-4cbe-affd-a06459a5e4c5
Date: Sun, 01 Mar 2009 18:09:49 GMT

The response body is omitted for brevity.

Execute . . . () Method Action When Invoked

Execute() or ExecuteWithRetries() Return up to the first 1,000 entities.

ExecuteAll() or ExecuteAllWithRetries() Return all entities with continuation tokens as you
enumerate over groups of 1,000 entities.

ExecuteWithRetries() and
ExecuteAllWithRetries()

Use the retry policy set on the TableStorageData
ServiceContext object for the queries.

Updating Entities by Replacing Their Property Values
The Update Customers button toggles adding or removing a plus sign (+) suffix to or from the
CompanyName property value of all 91 Customer entities. As mentioned earlier, entities are the basic units
of Azure Tables, so the REST API defines a new HTTP MERGE method that requires the request body
to contain values for all entity properties, not just those properties whose values are to be changed.
PartitionKey and RowKey values are immutable and can’t be updated.

The ADO.NET Data Services client library uses verb tunneling with POST and a header for cases where
custom methods, such as MERGE, aren’t allowed. You can learn more about the differences between MERGE
and PUT methods from Pablo Castro’s ‘‘Merge vs. Replace Semantics for Update Operations’’ post of May
20, 2008 (http://blogs.msdn.com/astoriateam/archive/2008/05/20/merge-vs-replace-semantics-
for-update-operations.aspx).

Updating Entities with Code
For ease of use, the SampleWebCloudService project has an Update Customers button that executes the
code of Listing 4-14 to toggle the change to the CompanyName property value.

Listing 4-14: Code to toggle a + suffix to the CompanyName property value

// Updates all CustomerTable entities individually
// Sets the customersView GridView’s DataSource
protected void btnUpdateCusts_Click(object sender, EventArgs e)
{

Stopwatch timer = new Stopwatch();
timer.Start();

90

Chapter 4: Scaling Azure Table and Blob Storage

skipPreRenderTime = true;

CustomerDataServiceContext serviceContext = null;

// Create the service context to query against
serviceContext = new CustomerDataServiceContext(account);
serviceContext.RetryPolicy = RetryPolicies.RetryN(3,

TimeSpan.FromSeconds(1));

var results = from c in serviceContext.CustomerTable
select c;

TableStorageDataServiceQuery<CustomerDataModel> query =
new TableStorageDataServiceQuery<CustomerDataModel>
(results as DataServiceQuery<CustomerDataModel>);

IEnumerable<CustomerDataModel> queryResults =
query.ExecuteAllWithRetries();

// Toggle them as updated
foreach (var result in results)
{

if (result.CompanyName.Contains("+"))
result.CompanyName =

result.CompanyName.Substring(0, result.CompanyName.Length - 1);
else

result.CompanyName += "+";
serviceContext.UpdateObject(result);

}
serviceContext.SaveChanges();

// Display the current page of changed entities
customersView.DataSource = null;
customersView.DataSourceID = "customerData";
customersView.DataBind();
txtTime.Text = (timer.ElapsedMilliseconds / 1000D).ToString("0.000");

}

Updating Entities with the HTTP MERGE Method
Listing 4-15 contains the MERGE request header and body and Listing 4-16 contains the response header
for an update that adds a + symbol to the first CustomerTable entity on the first page.

Listing 4-15: HTTP MERGE request header and body for an update to the first
CustomerTable entity

MERGE /CustomerTable(PartitionKey=’Customer’,RowKey=’ALFKI’) HTTP/1.1
User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Thu, 26 Feb 2009 22:27:48 GMT
Authorization: SharedKeyLite oakleaf:rQwBAjjf2A2rTVJGXtgUzePpqZbIUS6ScK03ehVAI2s=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx

Continued

91

Part I: Introducing the Windows Azure Platform

Listing 4-15: HTTP MERGE request header and body for an update to the first
CustomerTable entity (continued)

MaxDataServiceVersion: 1.0;NetFx
Content-Type: application/atom+xml
If-Match: W/"datetime’2009-02-26T22%3A13%3A35.4152565Z’"
Host: oakleaf.table.core.windows.net
Content-Length: 1187
Expect: 100-continue

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">

<title />
<updated>2009-02-26T22:27:48.0812664Z</updated>
<author>
<name />

</author>
<id>http://oakleaf.table.core.windows.net/CustomerTable(PartitionKey=’Customer’,

RowKey=’ALFKI’)</id>
<content type="application/xml">
<m:properties>

<d:Address>Obere Str. 57</d:Address>
<d:City>Berlin</d:City>
<d:CompanyName>Alfreds Futterkiste+</d:CompanyName>
<d:ContactName>Maria Anders</d:ContactName>
<d:ContactTitle>Sales Representative</d:ContactTitle>
<d:Country>Germany</d:Country>
<d:CustomerID>ALFKI</d:CustomerID>
<d:Fax>030-0076545</d:Fax>
<d:PartitionKey>Customer</d:PartitionKey>
<d:Phone>030-0074321</d:Phone>
<d:PostalCode>12209</d:PostalCode>
<d:Region m:null="true" />
<d:RowKey>ALFKI</d:RowKey>
<d:Timestamp m:type="Edm.DateTime">2009-02-26T22:13:35.4152565Z</d:Timestamp>

</m:properties>
</content>

</entry>

Listing 4-16: HTTP MERGE response after an update to the first CustomerTable entity

HTTP/1.1 204 No Content
Cache-Control: no-cache
Content-Length: 0
ETag: W/"datetime’2009-02-26T22%3A26%3A09.7397062Z’"
Server: Table Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: e61443a9-7f12-41a9-bd08-dd726dee52c2
Date: Thu, 26 Feb 2009 22:26:09 GMT

Notice that the response contains the generated ETag header value for the updated values for use by
subsequent concurrency conflict detection code.

92

Chapter 4: Scaling Azure Table and Blob Storage

Deleting Entities
The final CRUD operation is deleting entities. The .NET Client Library doesn’t support wildcards in
Where expressions, so deletions must iterate the collection of entities to be deleted and mark them to be
deleted individually, as shown in Listing 4-17.

Listing 4-17: Code to delete all Customer entities in the CustomerTable

// Deletes all CustomerTable entities individually
// Resets the customersView GridView’s DataSource
protected void btnDeleteAll_Click(object sender, EventArgs e)
{

Stopwatch timer = new Stopwatch();
timer.Start();
skipPreRenderTime = true;
var results = from c in serviceContext.CustomerTable

select c;
TableStorageDataServiceQuery<CustomerDataModel> query =

new TableStorageDataServiceQuery<CustomerDataModel>
(results as DataServiceQuery<CustomerDataModel>);

IEnumerable<CustomerDataModel> queryResults = query.ExecuteAllWithRetries();

foreach (var result in results)
{

serviceContext.DeleteObject(result);
}
serviceContext.SaveChanges();
customersView.DataSource = null;
customersView.DataSourceID = "customerData";
customersView.DataBind();

btnCreateCustomers.Enabled = true;
btnUpdateCusts.Enabled = false;
txtTime.Text = (timer.ElapsedMilliseconds / 1000D).ToString("0.000");

}

Invoking the SaveChanges() method deletes the entities from their table with multiple DELETE requests
and responses similar to those in Listings 4-18 and 4-19:

Listing 4-18: HTTP DELETE request for a CustomerTable entity

DELETE /CustomerTable(PartitionKey=’Customer’,RowKey=’ALFKI’) HTTP/1.1
User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Thu, 26 Feb 2009 22:14:57 GMT
Authorization: SharedKeyLite oakleaf:y/UUPazLiQK2ULhjJnBxOT5FxtM0ofM3S+f2qESvWJo=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx
Content-Type: application/atom+xml
If-Match: W/"datetime’2009-02-26T16%3A00%3A55.7667062Z’"
Host: oakleaf.table.core.windows.net
Content-Length: 0

93

Part I: Introducing the Windows Azure Platform

Listing 4-19: HTTP DELETE response after deleting a CustomerTable entity

HTTP/1.1 204 No Content
Cache-Control: no-cache
Content-Length: 0
Server: Table Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 138a7375-20ca-47a0-8257-6dbe6d4f8253
Date: Thu, 26 Feb 2009 22:13:19 GMT

Storing and Retrieving Blobs
Working with Azure Blob Services is considerably simpler than manipulating Azure Tables and entities.
Figure 4-12 shows the AzureBlobTest project running on the Developer Fabric after the download of
seven BMP and eight ZIP blobs from Windows Live SkyDrive public folders and the upload of them to
Azure Blob Services in the cloud.

Figure 4-12: The sample AzureBlobTest project’s Default.aspx Page with 15 blobs stored in the specified
Container.

94

Chapter 4: Scaling Azure Table and Blob Storage

The SkyDrive check box is marked by default, making SkyDrive the source for BMP and ZIP blobs
that you select in the Source File URI drop-down list. Selecting a blob from this list fills the Link Name
text box with ‘‘AzureBlob’’ plus the width of the bitmap in pixels and the file type extension. To order
the list in the addition sequence, blobs are named with UTC date and time in ISO 8601 format. Click-
ing a Link item with a bmp extension generates a URL, such as http://oakleaf2.blob.core.windows
.net/oakleaf2store/2009-02-26T19:53:07.7481188Z.bmp Target="_Blank", to open a BMP file in
a new window. Blob URIs use the http://servicename.blob.core.windows.net/containername/
[path/]blobname.ext format. The containername is the Project Label you gave to an Azure Storage
Account you created from a Hosted Service token in the Azure Services Developer Portal.

The Create a Project – Project Properties page of early Windows Azure CTPs states that Project Label
and Project Description ‘‘information is used only on the developer panel.’’ This statement isn’t correct.

Clicking a Link item with a zip extension opens a File Download dialog with buttons to open or save the
ZIP file, or cancel the operation.

Clearing the SkyDrive check box disables the drop-down list and enables the File Path/Name text box
and Browse button, which lets users update files from the local file system when running the project in
the Development Framework.

The Upload Times shown in Figure 4-12 are the time in seconds to retrieve the files from SkyDrive;
Create Times are the times in seconds required to stream the blobs to Azure Blob Services in the cloud.
These operations were conducted over an AT&T DSL connection that tested 2,544 kbps download and
429 kbps upload immediately before the preceding operations. The ratio of Upload to Create times reflects
the approximate 6:1 ratio of download to upload network speed.

The ‘‘Initial Azure Blob Generation Time vs. File Size Graph’’ post (http://bit.ly/12lsCq,
http://oakleafblog.blogspot.com/2009/01/initial-azure-blob-generation-time-
vs.html) provides a graphical and tabular representation of the much shorter times required to perform
the same operations with cloud storage.

Blob Content Types
Blobs are byte arrays, so they can contain any type of data that can be expressed as a series of octets.
The maximum length of an Azure blob is 50GB in the latest CTP. A blob’s data type is defined by its
Content-Type HTTP header value, which uses a type/subtype format defined by IETF RFC 2046,
‘‘Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types’’ (www.ietf.org/rfc/
rfc2046.txt). RFC 2046 defines the top-level media types listed in the following table.

RFC 2046’s authors anticipated that many additional subtypes would be required and designated the
Internet Assigned Numbers Agency (IANA) as the registrar of media types. IANA’s MIME Media Types
page (http://bit.ly/nnCIb, www.iana.org/assignments/media-types/) lists current content types
with links to current subtypes. When this book was written, IANA had added example, which cannot
be used in a Content-Type header, and model as registered MIME media types, and a large number of
subtypes for most types.

Media types and subtypes that begin with x- are classified as experimental (private) values to be used by
consenting systems by mutual agreement. The use of experimental values as top-level types is strongly
discouraged; most x- values are application subtypes. Most Azure-specific metadata uses x-ms-* or
similar experimental HTTP headers, such as x-ms-date: Thu, 26 Feb 2009 21:05:25 GMT.

95

Part I: Introducing the Windows Azure Platform

Class Type RFC 2046 Description

Discrete Text Textual information; the subtype plain indicates that the data
contains no formatting commands.

Discrete Image Image data, which requires a display device to view the
information; RFC 2046 defines initial jpeg and gif subtypes.

Discrete Audio Audio data, which requires an audio output device to ‘‘display’’
the data; RFC 2046 defines an initial basic subtype.

Discrete Video Video data, which requires the capability to display moving
images; RFC 2046 defines an initial mpeg subtype.

Discrete application Discrete data that do not fit any other category. RFC 2046 defines
initial octet-stream and PostScript subtypes.

Composite Multipart Data consisting of multiple entities of independent data types.
Composite Message An encapsulated message.

Figure 4-13: Diagrams of the BlobContainer and BlobStorage
abstract classes and BlobContents class in the BlobStorage.cd file.

96

Chapter 4: Scaling Azure Table and Blob Storage

The StorageClient Class Library’s Blob Storage and REST
Blob Storage Classes

The StorageClient class library has fewer Blob than Table classes because Blobs have one fewer levels
in their hierarchy than Tables. Figures 4-13 through 4-15 show the class diagrams from StorageClient’s
BlobStorage.cd and RestBlobStorage.cd files.

The BlobContainerRest and BlobStorageRest classes, which are used extensively in the code sections
that follow, inherit from BlobContainer and BlobStorage.

Obtaining a File from Windows Live SkyDrive and Uploading
It to Azure Blob Storage with Code

Listing 4-20 contains the code that downloads blobs from Windows Live SkyDrive and uploads
them or files from the client’s file system to Azure Blob Storage. The blob and log account and
container names are stored with other related metadata in the ServiceConfiguration.cscfg file’s
ConfigurationSettings section. There’s little that users can do about errors when running the project
in production, so error-handling consists of writing messages to a statusMessage text box invoking
the RoleManager.WriteToLog() method to add blobs with error information to the oakleaf2log
container.

Figure 4-14: Diagrams of the ContainerProperties,
BlobProperties, and RetryProperties classes in the
BlobStorage.cd file.

97

Part I: Introducing the Windows Azure Platform

Figure 4-15: Diagrams of the BlobContainerRest, BlobStorageRest,
and ListContainersResult classes and the XPathQueryHelper static
class in the RestBlobStorage.cd file.

98

Chapter 4: Scaling Azure Table and Blob Storage

Listing 4-20: Code to download a file in 4,096-byte chunks to a MemoryStream
and upload it in 1MB blocks to an Azure Blob Services Container

{
public partial class _Default : System.Web.UI.Page
{

// Attempt to add a blob from a SkyDrive file or from the local file system
protected void insertButton_Click(object sender, EventArgs e)
{

// Clear the status message
statusMessage.Text = null;
requestId = null;

try
{

// Set fileUpload validation
string extension = null;
if (chkSkyDrive.Checked)
{

fileUploadValidator.Enabled = false;
extension = lstURLs.SelectedValue;
extension = extension.Substring(extension.LastIndexOf("."));
if (extension.Contains(".com"))

// Special-case for HTML page/blog downloads
extension = ".html";

}
else
{

fileUploadValidator.Enabled = true;
extension = return

System.IO.Path.GetExtension(fileUploadControl.FileName);
}

// Use high-resolution ISO8601 UTC DateTime string to order entries
string utcDate = DateTime.Now.ToUniversalTime().ToString("o");
BlobProperties properties = new BlobProperties(utcDate + extension);

// Create metadata to be associated with the blob
NameValueCollection metadata = new NameValueCollection();
metadata["FileName"] = fileNameBox.Text;
metadata["CreateTime"] = "0.000";
metadata["Submitter"] = submitterBox.Text;

// Time upload operation
sw.Reset();
sw.Start();

// Get the blob data
BlobContents fileBlob = null;

long contentLength = 0;
if (chkSkyDrive.Checked)
{

Continued

99

Part I: Introducing the Windows Azure Platform

Listing 4-20: Code to download a file in 4,096-byte chunks to a MemoryStream
and upload it in 1MB blocks to an Azure Blob Services Container (continued)

// Create a web request allowing common/all MIME types
HttpWebRequest request =

(HttpWebRequest)WebRequest.Create(lstURLs.SelectedValue);
request.Accept =

"image/gif, image/jpeg, image/pjpeg, image/png, " +
"image/bmp, application/x-gzip, application/x-zip, " +
"application/x-zip-compressed, application/octet-stream, " +
" */*";

if (chkEnableGZip.Checked)
// Support GZip, deflate
request.Headers.Add(HttpRequestHeader.AcceptEncoding,

"gzip, deflate");

// Set GetResponse and GetRequestStream timeout to 300 seconds
// for large blobs
request.Timeout = 300 * 1000;
// Set timeout for writing to or reading from a stream to 300
// seconds for large blobs
request.ReadWriteTimeout = 300 * 1000;

// Get response header values for writable properties
WebHeaderCollection headers = request.GetResponse().Headers;
properties.ContentType = headers["Content-Type"];
properties.ContentEncoding = headers["Content-Encoding"];

// For logging
requestId = headers["x-ms-request-id"];

if (long.TryParse(headers["Content-Length"], out contentLength))
{

Stream respStream =
request.GetResponse().GetResponseStream();

if (chkEnableGZip.Checked
&& properties.ContentEncoding != null)

{
// Decompress gzip/deflate streams
if (properties.ContentEncoding.ToLower()

.Contains("gzip"))
{

respStream = new GZipStream(respStream,
CompressionMode.Decompress);

}
else if

(properties.ContentEncoding.ToLower()
.Contains("deflate"))

{
respStream = new DeflateStream(respStream,

CompressionMode.Decompress);
}

}

100

Chapter 4: Scaling Azure Table and Blob Storage

headers = request.GetResponse().Headers;
// Chunking to blocks requires streams that support seeking
// (.CanSeek = true)
using (MemoryStream memStream = new MemoryStream())
{

// Use a 4-kB buffer
byte[] buffer = new byte[4096];
int count = 0;
do
{

count = respStream.Read(buffer, 0, buffer.Length);
memStream.Write(buffer, 0, count);

} while (count != 0);
fileBlob = new BlobContents(memStream.ToArray());

}
respStream.Close();

}
}
else
{

properties.ContentType =
fileUploadControl.PostedFile.ContentType;

contentLength = fileUploadControl.PostedFile.ContentLength;
fileBlob = new BlobContents(fileUploadControl.FileBytes);

}
metadata["UploadTime"] = (sw.ElapsedMilliseconds /

1000D).ToString("#,##0.000");

if (contentLength > 0)
{

// Add metadata to properties
properties.Metadata = metadata;

// Time blob creation
sw.Reset();
sw.Start();
blobContainer.CreateBlob(properties, fileBlob, true);
lblTime.Text = (sw.ElapsedMilliseconds /

1000D).ToString("#,##0.000");
metadata["CreateTime"] = lblTime.Text;

properties.Metadata = metadata;
blobContainer.UpdateBlobMetadata(properties);

if (doWriteLogs)
{

string logEntry = properties.Name + ";" +
metadata["FileName"] +
";" + properties.ContentType + ";" +
properties.ContentEncoding + ";" +
contentLength.ToString("#,##0") + ";" +
properties.LastModifiedTime + ";" +
metadata["UploadTime"] + ";" +
metadata["CreateTime"] + ";" +

Continued

101

Part I: Introducing the Windows Azure Platform

Listing 4-20: Code to download a file in 4,096-byte chunks to a MemoryStream
and upload it in 1MB blocks to an Azure Blob Services Container (continued)

metadata["Submitter"] + ";" +
DateTime.Now.ToString();

RoleManager.WriteToLog("Verbose", logEntry);
}

// Update the UI
UpdateFileList();
fileNameBox.Text = "";
statusMessage.Text = "";

}
else
{

statusMessage.Text = "Zero-length blob not created.";
// x-ms-request-id included in logs per Jai Haridas, 1/3/2009
if (requestId == null)

RoleManager.WriteToLog("Error",
"Attempt to add zero-length blob.");

else
RoleManager.WriteToLog("Error",

"Attempt to add zero-length blob (x-ms-request-id = " +
requestId + ").");

}
}
catch (WebException webExcept)
{

statusMessage.Text = "Web Exception uploading blob: " +
webExcept.Message;

if (requestId != null)
statusMessage.Text += " (x-ms-request-id = " + requestId +

").";

if (doWriteLogs)
RoleManager.WriteToLog("Error", statusMessage.Text);

}
catch (Exception ex)
{

statusMessage.Text = "Exception uploading blob: " + ex.Message;
if (requestId != null)

statusMessage.Text += " (x-ms-request-id = " + requestId + ").";

if (doWriteLogs)
RoleManager.WriteToLog("Error", statusMessage.Text);

}
}

}
}

102

Chapter 4: Scaling Azure Table and Blob Storage

Persisting Log Blobs to Containers
The RoleManager.WriteToLog() method writes messages to the virtual operating system’s event log,
which isn’t accessible to Azure or .NET Services. Log entries are the only method for debugging ser-
vices running in the Azure Fabric, so the Azure team provides a means to persist event log entries
to blobs. To copy the logs to blobs contained in a designated container name (oakleaf2logs for this
example), open the Hosted Service (oakleaf2host), click the Production service’s Configure button to
open the ServiceName – Production Deployment – Azure Blob Test Harness – Service Tuning page, type
the Container Name, and click the Copy Logs button (see Figure 4-16). The copying process occurs within
a minute or two under normal conditions.

Figure 4-16: Copying logs from the virtual operating system’s event logs to the designated container name.

Viewing Content and Log Blobs with Utilities
Several utilities exist for viewing and copying Azure Hosted Services’ XML log data. Many have operat-
ing system or other limitations, which makes them less useful. Bill Lodin’s Windows Azure Log Viewer

103

Part I: Introducing the Windows Azure Platform

project works under Windows Vista and filters blobs to list only log files; more information and source
code for the project is available at http://bit.ly/WykNP, http://msdn.microsoft.com/en-us/azure/
dd637760.aspx. Figure 4-17 shows error logs that occurred when SkyDrive was temporarily out of
commission on January 5, 2009.

Azure creates log blobs for each 15-minute period in which at least one log entry occurs.

Figure 4-17: Displaying a list of error blobs in a container with Bill Lodin’s Windows Azure Log Viewer.

Clicking the Save to XML button writes the content of the blobs to an XML file of your choice. Figure 4-18
shows IE 8 displaying the content of the error log files list in Figure 4-18.

Downloading a Blob File from SkyDrive with the HTTP GET
Method

The Stream respStream = request.GetResponse().GetResponseStream(); instruction in Listing 4-20
generates the GET request and response headers shown in Listings 4-21 and 4-22.

Listing 4-21: HTTP GET request for uploading a 2.36MB public bitmap blob from
Windows Live SkyDrive

GET
/y1pmIyIHdmdh72WYsCNJpCXaDrO4l0byEZYgC6nTVoc2WwoLb1rMSvvB8LO70Itetoy8s1PWwo9rwOga_D
iyzaA_w/AzureBlob1024.bmp HTTP/1.1
Accept: image/gif, image/jpeg, image/pjpeg, image/png, image/bmp,
application/x-gzip, application/x-zip, application/x-zip-compressed,
application/octet-stream, */*
Accept-Encoding: gzip, deflate
Host: fjhpug.bay.livefilestore.com

104

Chapter 4: Scaling Azure Table and Blob Storage

Figure 4-18: IE 8 displaying the partial XML content of error logs copied from a blob container.

Listing 4-22: HTTP GET response for uploading a 2.36MB public bitmap blob from
Windows Live SkyDrive

HTTP/1.1 200 OK
Date: Thu, 26 Feb 2009 21:04:55 GMT
Server: Microsoft-IIS/6.0
P3P: CP="BUS CUR CONo FIN IVDo ONL OUR PHY SAMo TELo"
X-Powered-By: ASP.NET
X-MSNSERVER: BY2STRWBA260
X-AspNet-Version: 2.0.50727
Content-Location:
http://fjhpug.bay.livefilestore.com/y1pAalNawB0iSRMtfpb09bdujbj6ejuC1T6
jCNp7pXQM8ZAFTG7gYJEjFztfT68gAY04JVEa9UbLS8
Content-Length: 2359350
X-SqlDataOrigin: S
X-StreamOrigin: B
Cache-Control: private
Expires: Wed, 27 May 2009 21:04:55 GMT
Last-Modified: Sun, 28 Dec 2008 16:46:11 GMT
Content-Type: image/bmp

105

Part I: Introducing the Windows Azure Platform

Uploading a Blob to Azure Storage Services in 1MB Blocks
Blobs having a size greater than 64MB must be uploaded to Azure Blob Storage in 4MB or smaller blocks;
you can upload smaller than 64MB files in a single operation. Using blocks to assemble large blobs per-
mits parallel uploading for improved performance and the ability to resume uploading in the event of
connection problems.

Executing the blobContainer.CreateBlob(properties, fileBlob, true); instruction in Listing 4-20
generates PUT request and response headers similar to those shown in Listings 4-23 and 4-24 for each
1MB or smaller block.

Listing 4-23: HTTP PUT request to upload a 1MB block of the 2.36MB bitmap blob to
Azure Blob Storage

PUT /oakleaf2store/2009-02-26T21%3a04%3a55.8384887Z.bmp?comp=block
&blockid=AQAAAA%3d%3d&timeout=30 HTTP/1.1
x-ms-date: Thu, 26 Feb 2009 21:05:25 GMT
Content-Type: image/bmp
x-ms-meta-FileName: AzureBlob1024.bmp
x-ms-meta-CreateTime: 0.000
x-ms-meta-Submitter: Azure User
x-ms-meta-UploadTime: 8.932
Authorization: SharedKey oakleaf2:frBWGtgXfH8bjaexWvBm5Z+wpFnWtrS5TKduk4wrzL0=
Host: oakleaf2.blob.core.windows.net
Content-Length: 1048576
Expect: 100-continue

Listing 4-24: HTTP PUT response for a 1MB block of the 2.36MB bitmap blob uploaded
to Azure Blob Storage

HTTP/1.1 201 Created
Transfer-Encoding: chunked
Content-MD5: m10f0+eN72dLslV53O6qpQ==
Server: Blob Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 33363ac5-daf7-4ced-8194-b6d15bde008c
Date: Thu, 26 Feb 2009 21:04:06 GMT

Downloading a Selected Blob
As mentioned earlier, clicking a filename for a blob of the image media type in the GridView’s Link
column opens the image in its own window. Blobs of the application media type usually open a File
Download dialog.

Opening a Selected Blob in a Browser or Dialog with Code
The emphasized lines of the Default.aspx page’s source code in Listing 4-25 generate the FileURI for
the blob, such as http://oakleaf2.blob.core.windows.net/oakleaf2store/2009-02-26T19:53:07
.7481188Z.bmp Target="_Blank", to open a BMP file in a new window.

106

Chapter 4: Scaling Azure Table and Blob Storage

Listing 4-25: ASP.NET source code to open the selected file in a new window or
display a file download dialog

<asp:GridView ID="fileView"
AutoGenerateColumns="False" DataKeyNames="BlobName"
Runat="server" onrowcommand="RowCommandHandler" BackColor="White"
BorderColor="#DEDFDE" BorderStyle="None" BorderWidth="1px" CellPadding="4"
ForeColor="Black" GridLines="Vertical" onrowdeleted="fileView_RowDeleted"
onrowdeleting="fileView_RowDeleting" AllowSorting="True"
EnableSortingAndPagingCallbacks="True">
<RowStyle BackColor="#F7F7DE" />
<Columns>

<asp:ButtonField Text="Delete" CommandName="DeleteItem"/>
<asp:HyperLinkField

HeaderText="Link"
DataTextField="FileName"
DataNavigateUrlFields="FileUri" Target="_blank" />
...

</Columns>
...

</asp:GridView>

Displaying a Selected Bitmap Blob in a Browser with a GET Request
The emphasized ASP.NET source code of Listing 4-25 generates the HTTP GET request and response
shown in Listings 4-26 and 4-27 for a blob that has the image media type.

Listing 4-26: HTTP GET request for the 2.36MB bitmap blob from Azure Blob Storage

GET /oakleaf2store/2009-02-26T21:04:55.8384887Z.bmp HTTP/1.1
Accept: */*
Referer: http://127.0.0.1:82/Default.aspx
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; SLCC1;
.NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.5.21022; .NET CLR 3.5.30428;
.NET CLR 3.5.30729; .NET CLR 3.0.30618; MS-RTC LM 8; InfoPath.2;
OfficeLiveConnector.1.3; OfficeLivePatch.1.3)
Accept-Encoding: gzip, deflate
Host: oakleaf2.blob.core.windows.net
Connection: Keep-Alive

Listing 4-27: HTTP GET response for the 2.36MB bitmap blob from Azure Blob Storage

HTTP/1.1 200 OK
Content-Length: 2359350
Content-Type: image/bmp
Last-Modified: Thu, 26 Feb 2009 21:04:12 GMT
ETag: 0x8CB666CE8A66E7D
Server: Blob Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 56fdeb2e-9e83-45b8-84ed-2eb944457acf

Continued

107

Part I: Introducing the Windows Azure Platform

Listing 4-27: HTTP GET response for the 2.36MB bitmap blob from Azure Blob Storage
(continued)

x-ms-meta-FileName: AzureBlob1024.bmp
x-ms-meta-CreateTime: 45.332

x-ms-meta-Submitter: Azure User
x-ms-meta-UploadTime: 8.932
Date: Thu, 26 Feb 2009 21:18:24 GMT

Deleting a Specified Blob
You can’t update blob content directly in the CTP used to write this book, so the only remaining CRUD
operation on CTP blobs is deletion. The Azure group promises to enable replacing, adding, or removing
a blob’s blocks, and copying blobs to a new blob name in future versions.

You can update blob metadata with code in the CTP.

Deleting a Blob Selected in a GridView Control with Code
Listing 4-28 contains the code to find the blob selected for deletion from a current list and delete it by
invoking the DeleteBlob() method.

Listing 4-28: Deleting a blob belected in a GridView control with code (not scalable)

// Process DeleteItem command
protected void RowCommandHandler(object sender, GridViewCommandEventArgs e)
{

if (e.CommandName == "DeleteItem")
{

// Clear the status message
statusMessage.Text = null;

// Get blob count
IEnumerable<object> blobList = blobContainer.ListBlobs(String.Empty, false);

if (blobList.Count() > 3)
{

// Multiple users can have out-of-range index values
try
{

int index = Convert.ToInt32(e.CommandArgument);
if (index < fileView.DataKeys.Count)
{

string blobName = (string)fileView.DataKeys[index].Value;
if (blobContainer.DoesBlobExist(blobName))
{

// Start deletion elapsed time
sw.Reset();
sw.Start();
blobContainer.DeleteBlob(blobName);
lblTime.Text = (sw.ElapsedMilliseconds /

1000D).ToString("#,##0.000");

108

Chapter 4: Scaling Azure Table and Blob Storage

}
}

}
catch (Exception ex)
{

statusMessage.Text = "Can’t delete selected item. " + ex.Message;

if (doWriteLogs)
RoleManager.WriteToLog("Error", statusMessage.Text);

}
}
else

statusMessage.Text =
"You must leave at least 3 blobs in the GridView for other users.";

}
UpdateFileList();

}

The approach used for deletion in listing isn’t scalable because it depends on the blobList being
immutable during the interval between selection and execution of the DeleteBlob() method. The
interval might be a microsecond or less, but it introduces unacceptable uncertainty in the process. If
e.Command returned the GridView’s index value instead of index position, the value could be used with
the DoesBlobExist test to delete the blob without the uncertainty.

Deleting a Blob Selected in a GridView Control with an HTTP DELETE
Request

Executing the DeleteBlob() method generates the HTTP DELETE request and response headers of
Listings 4-29 and 4-30.

Listing 4-29: HTTP DELETE request for the 2.36MB bitmap blob from Azure Blob
Storage

DELETE /oakleaf2store/2009-02-26T20%3a10%3a00.7204059Z.bmp?timeout=30 HTTP/1.1
x-ms-date: Thu, 26 Feb 2009 20:38:27 GMT
Authorization: SharedKey oakleaf2:o4KZgoYFlaUymMACWp7NTmx81PzVR3Ydg5bHErVDUVQ=
Host: oakleaf2.blob.core.windows.net
Content-Length: 0

Listing 4-30: HTTP DELETE response for the 2.36MB bitmap blob from Azure Blob
Storage

HTTP/1.1 202 Accepted
Server: Blob Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 03717cbb-dc34-4b97-b7aa-a3f3d8e353a3
Date: Thu, 26 Feb 2009 20:38:47 GMT
Content-Length: 0

Taking Advantage of New Copy Blob and Get Blob List
Methods

The Windows Azure SDK (May 2009 CTP) introduced new Copy Blob PUT and Get Blob List GET request
methods. Like the new EGTs for tables Copy Blob, you must specify an x-ms-version request header

109

Part I: Introducing the Windows Azure Platform

with a value of 2009-04-14. Copy Blob copies a blob to a destination within the storage account; Get
Blob List retrieves the list of blocks that have been uploaded as part of a blob; the May 2009 CTP version
lets you specify lists of committed, uncommitted, or all blocks.

Online help for Copy Blob is available at http://bit.ly/u0e5y, http://msdn.microsoft.com/en-us/
library/dd894037.aspx and for Get Blob List at http://bit.ly/sQxbA, http://msdn.microsoft.com/
en-us/library/dd179400.aspx.

The May 2009 CTP’s development environment and implementation of the sample StorageClient
wrapper don’t support Copy Blob or Get Blob List operations, so you can’t execute these methods with
conventional .NET code that uses StorageClient objects.

Steve Marx’s ‘‘Sample Code for New Windows Azure Blob Features’’ post (http://bit.ly/JjRuS,
http://blog.smarx.com/posts/sample-code-for-new-windows-azure-blob-features)
includes an updated StorageClient library and a simple test program to demonstrate these two
methods.

Late Changes to Azure Blobs
The Azure Team announced on August 11, 2009 the following three new features for x-ms-version:
2009-7-17 of Azure Blobs:

❑ Update Blob with PutBlockList. Update the contents of a blob with PutBlockList, which lets
you add blocks, remove blocks, replace blocks, shuffle the order of existing blocks, or any com-
bination of these for an existing blob. You only need to upload the blocks you want to add or
change.

❑ Root Blob Container. All storage accounts now can have a single root blob container. This
enables applications to store and reference blobs with the domain address, such as in this
sample:

❑ http://myaccount.blob.core.windows.net/picture.jpg

❑ This version also changes the way applications perform operations on containers to make it
explicit that it is a container operation instead of a blob operation. For example, to create a con-
tainer named pictures, issue the following PUT request:

❑ PUT http://myaccount.blob.core.windows.net/pictures?restype=container

❑ Shared Access Signatures for Signed URLs. You can create signatures, with an expiration date,
that you can give to users to provide access to Azure Blobs without needing to disclose your pri-
vate key value or make the blob container public. Following is a URL example with a signature
(starting after the ? query character) that allows read access to all blobs in the pictures container
until July 20, 2009 and access to the profile.jpg blob in the pictures container.

GET http://myaccount.blob.core.windows.net/pictures/profile.jpg?

se=2009-07-20&sr=c&sp=r&sig=xUXi%2f%2fxnETUHQoV0MGS06OkEiTo%3d

You create a signature computing a hash over a canonicalization of the request using your
storage account secret key. The signature can then be used as part of the URL to provide
read, write, or delete access for blob requests. Azure evangelist Steve Marx’s ‘‘New Stor-
age Feature: Signed Access Signatures’’ post of August 11, 2009 (http://bit.ly/WFjlU,
http://blog.smarx.com/posts/new-storage-feature-signed-access-signatures) offers
a sample application that lets you upload a file and specify the duration of its availability.

110

Chapter 4: Scaling Azure Table and Blob Storage

This operation returns a special URL that others can use to access the uploaded file until the
expiration time.

The Update Blog with PutBlockList and Root Blob Container operations require you to specify
x-ms-version: 2009-7-17 in the header; Shared Access Signatures don’t. The update also includes three
minor semantic changes for blobs and one for tables. When this book was written, only the Windows
Azure Storage REST interface supported these new features; support by the Windows Azure SDK and
the StorageClient sample class library were scheduled to follow. Documentation for the new features
is available at http://bit.ly/t5VcY, http://msdn.microsoft.com/en-us/library/dd135733.aspx.

Summary
Azure Storage Services provides scalable persistent stores for semi-structured or structured data in Azure
Tables, file-based byte arrays in Azure Blobs, and messages containing text or serialized objects in Azure
Queues. To assure data reliability, each instance of an Azure data type is stored as a master and two
replicas, which are located in different failure domains. Ultimately, data can be replicated to two or more
data centers for increased data security. Access to tables and queues requires knowledge of the storage
account name and primary or secondary account shared key for security; blobs in containers designated
as public can be accessed by anyone who knows the blob’s URL. During Azure’s test period, redeeming
an access token for a free Hosted Service enables creating two no-charge Storage Accounts. Hosted Azure
.NET applications as well as conventional applications written in any popular computer language can
access Tables, Blobs, and Queues with the Web-standard REST API. The Azure SDK includes a .NET 3.5
SP1 StorageClient class library of wrappers for the REST API to simplify .NET programming with CLR
objects.

Azure Tables use a schemaless Entity-Attribute-Value data model instead of the more common rela-
tional model because relational tables with fixed schema are notoriously difficult to scale to terabytes
or petabytes and restructure after growing to these sizes. All tables contain three system properties
(attributes): PartitionKey, RowKey, and Timestamp. Partitions define the unit of table consistency; Par-
titionKey and RowKey values define the equivalent of a composite primary key for the table. Custom
attributes are a property bag whose members can vary within the table. The Google App Engine’s Data
Store and Amazon Web Service’s SimpleDB use the EAV data model with query languages that emulate
a SQL subset to return result sets. Azure uses LINQ to REST queries in conjunction with ADO.NET Data
Services and the StorageClient classes to return entity collections. The chapter provided examples of
CRUD operations on Azure Tables with LINQ or the REST API.

Azure Blobs consist of octets (named byte arrays) up to 50GB in length of any registered or experimental
media type. Arrays of 64MB or fewer can be stored directly to a blob; large arrays are created by upload-
ing multiple blocks up to 4MB in length. Assembling blobs from blocks permits uploading blocks in
parallel and resuming block assembly after an interruption. Named containers store an unlimited num-
ber of blobs and may be designated as publically or privately readable. The chapter included examples for
creating, retrieving, and deleting blobs with the REST API or .NET code that accesses the StorageClient
classes.

111

Part II

Taking Advantage of Cloud
Services in the Enterprise

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

Chapter 6: Authenticating and Authorizing Service Users

Chapter 7: Optimizing the Scalability and Performance of Azure Tables

Chapter 8: Messaging with Azure Queues

Minimizing Risk When
Moving to Azure Cloud

Services

Earlier chapters observed that the Windows Azure Platform’s capability to leverage developers’ C#
or VB programming expertise with Visual Studio is a primary selling point for the Windows Azure
Platform, which must compete with entrenched cloud-computing rivals — such as Amazon Web
Services’ Elastic Computing Cloud (EC2) and the Google App Engine. You might infer from Azure
marketing materials that you can simply take an existing ASP.NET Web site, tweak its Web.config
settings and SQL Server connection string, and upload it to a Microsoft data center for deployment
to Windows Azure.

As usual, reality differs greatly from marketing hype. As you’ll see in this chapter, obtaining man-
agement buy-in might take more time and energy than developing a completely new project or
upgrading an existing one. Other impediments include

❑ Moving from an ASP.NET web site to web application projects

❑ Migrating data to Azure Tables, Blobs, or SQL Data Services databases

❑ Moving the Web Application projects to Azure Hosted Services and connecting to Azure or
SQL Azure Database

❑ Convincing IT and enterprise management that hosting applications in Windows Azure
doesn’t impose significant risk of business interruption or regulatory infraction

At least during Azure’s early days, you’ll find the last item to be by far the most difficult issue to
overcome.

Part II: Taking Advantage of Cloud Services in the Enterprise

Bypassing Barriers to Cloud Computing
Your first step to an Azure development is convincing IT and top management that the cloud is a suitable
hosting environment for an existing or new project. The initial objections probably will relate to entrust-
ing a third party to provide application availability that’s better than your on-premises IT department
delivers. Maintaining complete confidentiality of valuable business information while in storage and in
transit is a top concern in all management surveys of cloud-computing intentions. Although Microsoft-
only or Microsoft-mostly shops are accustomed to Windows lock-in, management undoubtedly will be
interested in portability of applications between clouds of multiple providers.

‘‘Above the Clouds: A Berkeley View of Cloud Computing,’’ is a whitepaper published in February
2009 by the UC Berkeley Reliable Adaptive Distributed Systems Laboratory (also known as RADLab;
http://radlab.cs.berkeley.edu/), which received widespread attention from the computer
press at least in part because of its vendor neutrality. ‘‘Above the Clouds’’ includes the following
table to illustrate the 10 most important concerns of IT executives and top management when
considering adopting cloud computing for their organizations:

Top 10 Obstacles to and Opportunities for Growth of Cloud Computing

Obstacle Opportunity

1 Availability of service Use multiple cloud providers; use elasticity to
prevent distributed denial of service attacks

2 Data lock-in Standardize APIs; use compatible software to enable
surge computing

3 Data confidentiality and auditability Deploy encryption, VLANs, firewalls; geographical
data storage

4 Data transfer bottlenecks Using overnight courier for disks; data
backup/archiving; higher bandwidth switches

5 Performance unpredictability Improved VM support; flash memory; gang-schedule
VMs

6 Scalable storage Invent a scalable store

7 Bugs in large distributed systems Invent a debugger that relies on distributed VMs

8 Scaling quickly Invent an auto-scaler that relies on ML; use snapshots
for conservation

9 Reputation/fate sharing Offer reputation-guarding services like those for
e-mail

10 Software licensing Pay-for-use licenses; bulk-use sales

The following sections deal with obstacles from the preceding list that most cloud computing observers
consider the most intransigent.

116

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

ML is a general-purpose functional programming language and an abbreviation for metalanguage.

Bernard Golden’s ‘‘Cloud Computing: What UC Berkeley Can Teach You’’ article for the CIO web site
(http://bit.ly/PCLZA, www.cio.com/article/483390/Cloud_Computing_What_UC_Berkeley_Can
_Teach_You?taxonomyId=168354) is a review of the whitepaper from an IT management perspective.

Maximizing Data Availability and Minimizing Security Risks
Today’s cloud-based infrastructures are likely to exhibit better availability than most enterprise on-
premises IT services. Availability is usually measured in nines; for example, four nines represents services
being available 99.99% of the time. There are 43,200 minutes in a 30-day month, so achieving four nines
availability would permit a maximum of 4.32 minutes (0.01% of 43,200) of scheduled or unscheduled
downtime per month.

It’s common for telecommunications systems and data centers to be designed to achieve five nines avail-
ability, which corresponds to less than 30 seconds downtime per month. Cloud-computing vendors
ultimately must enter into service-level agreements (SLAs) that specify competitive application avail-
ability. Customers want five nines, but it appears that vendors might offer only three nines; for example,
Microsoft announced in mid-July 2009 that its SLA would cover 99.95% uptime guarantee for two or more
Azure service instances and 99.9% availability for storage services. Similarly, Amazon Web Services
warrants 99.95% uptime for EC2 and 99.9% for S3. Google hadn’t announced an SLA for Google App
Engine when this book was written. Cloud-computing SLAs offer rebates or credits for downtime but
don’t cover business interruption losses.

Regardless of the applicable SLA, it might take your application much longer than the downtime to
recover from a catastrophic failure that requires restoring the application, data, or both from a backup
copy. Azure provides failover clustering of thrice-replicated data and the Hosted Application instances
running when failure occurs. Real-world recovery time for clustered applications and replicated data
remains to be measured.

The ‘‘Above the Clouds’’ authors recorded outages for Amazon Simple Storage Service (S3), Google App
Engine, and Gmail in 2008, and listed explanations for the outages in the publication’s Table 7 with the
following comment: ‘‘Note that despite the negative publicity due to these outages, few enterprise IT
infrastructures are as good.’’

An IT-Related Risk Definition
The National Institute of Standards and Technology (NIST), formerly the National Bureau of Standards,
defines IT-Related Risk as

The net mission impact considering (1) the probability that a particular threat-source
will exercise (accidentally trigger or intentionally exploit) a particular information
system vulnerability and (2) the resulting impact if this should occur. IT-related risks
arise from legal liability or mission loss due to:

1. Unauthorized (malicious or accidental) disclosure, modification, or destruction of
information.

117

Part II: Taking Advantage of Cloud Services in the Enterprise

2. Unintentional errors and omissions.

3. IT disruptions due to natural or man-made disasters.

4. Failure to exercise due care and diligence in the implementation and operation of the IT
system.

The preceding definition is part of National Institute of Standards and Technology Special Publication
(NIST SP) 800-53 Revision 2, which provides guidelines for securing information systems within the
federal government by employing security controls. The guidelines apply to all aspects of information
systems that process, store, or transmit federal information, except national security systems as defined
by 44 United States Code (U.S.C), Section 3542. NIST 800-53 Rev. 2 is intended to provide guidance to
federal agencies in achieving a Federal Information Processing Standard (FIPS) 200, Minimum Security
Requirements for Federal Information and Information Systems, baseline.

The federal government has a mixed history with IT initiatives with many notable failed attempts to
adopt new technology. However, successful deployment of cloud computing and concomitant devel-
opment of governance systems that minimize IT risk for the public sector will ameliorate availability
and security concerns and spur adoption by the private sector. The federal contribution to private-sector
cloud computing probably will center on formal standards for maintaining data availability and security.
Federal and many state governments have privacy regulations for data that identifies individuals.

The Obama administration is likely to be more favorable to cloud computing proposals than its prede-
cessors. For example, ComputerWorld magazine writer Patrick Thibodeau reported on March 5, 2009 in
his ‘‘New federal CIO Vivek Kundra wants a Web 2.0 government’’ article:

The U.S. government’s first CIO, Vivek Kundra, introduced himself today as someone
who will act aggressively to change the federal government’s use of IT by adopting
consumer technology and ensuring that government data is open and accessible.

Kundra also wants to use technology such as cloud computing to attack the govern-
ment’s culture of big-contract boondoggles and its hiring of contractors who end up
‘‘on the payroll indefinitely.’’

Azure Web Services ensure application availability by replicating stored data at least three times and
offering optional geolocation of replicas in separate Microsoft data centers to provide disaster recovery
services.

NIST’s Idea for Federal Cloud Computing Standards
Chapter 1’s ‘‘Cloud Computing Concerns’’ section introduced ‘‘Perspectives on Cloud Computing and
Standards’’ (http://bit.ly/x054z, http://csrc.nist.gov/groups/SMA/ispab/documents/minutes
/2008-12/cloud-computing-standards_ISPAB-Dec2008_P-Mell.pdf), a presentation by Peter Mell and
Tim Grance of NIST’s Information Technology Laboratory. The presentation begins with a federal defi-
nition of standards-based cloud computing and continues with an ‘‘idea: Federal government identifies
minimal standards and an architecture to enable agencies to create or purchase interoperable cloud capa-
bilities.’’ It then goes on with brief lists of benefits and approaches to adopting cloud computing, which
apply equally to the private sector.

The presentation concludes with the following list of NIST Special Publication (SPs) to be created in fiscal
year 2009:

118

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

❑ Overview of cloud computing

❑ Cloud computing security issues

❑ Securing cloud architectures

❑ Securing cloud applications

❑ Enabling and performing forensics in the cloud

❑ Centralizing security monitoring in a cloud architecture

❑ Obtaining security from third-party cloud architectures through service-level agreements

❑ Security compliance frameworks and cloud computing (for example, HIPAA, FISMA, and SOX)

Subsequently, NIST issued their Draft NIST Working Definition of Cloud Computing v13
(http://bit.ly/10TNdu, http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v14
.doc) and Presentation on Effectively and Securely Using the Cloud Computing Paradigm v18
(http://bit.ly/17PKbM, http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-computing
-v22.ppt).

When this book was written in early 2009, only a few of the preceding SPs were available
in draft form or final form from NIST’s Publications web pages (http://bit.ly/sJECD,
http://csrc.nist.gov/publications/). Watch these pages for pending standards; NIST updates
its publication lists frequently.

Potential Cloud Computing Deployment by
the Department of Defense

The National Security Agency’s ‘‘DoD Cloud Computing Security Challenges’’ briefing by
Chris Kubic, Chief Architect, Information Assurance Architecture and Systems Security Engi-
neering Group, describes potential military cloud applications (http://bit.ly/171BzF,
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2008-12/cloud-computing-IA
-challenges_ISPAB-Dec2008_C-Kubic.pdf), which consist, in part, of the following:

❑ Cyber Network Defense: Sensor data storage, analysis, situational awareness

❑ Battlespace Awareness with the Common Operating Picture: status of troops, missions, vehicles,
weapons, supplies; in the future — autonomous (unmanned) weapons systems

❑ Storage/processing of tactical Intelligence, Surveillance, Reconnaissance (ISR) feeds; creating a tailored
picture based on a user’s access privileges

❑ Simulation and Visualization: Mission planning and training

Tactical use of cloud computing by the military and other security-intensive agencies will reduce IT
organizations’ apprehension that cloud computing is, by its very nature, unreliable and insecure.

Gaining and Auditing Regulatory Compliance
Several laws and regulations related to data security and privacy are currently in effect in the United
States. These include the Gramm-Leach-Bliley (GLB) Act, Sarbanes-Oxley Act (SOX, also known as the

119

Part II: Taking Advantage of Cloud Services in the Enterprise

Public Company Accounting Reform and Investor Protection Act of 2002), Health Insurance Portabil-
ity and Accountability Act (HIPAA), and the Foreign Corrupt Practices Act. The UK’s London Stock
Exchange Combined Code and South Africa’s Report on Corporate Governance for South Africa (King
II) regulate transparency in financial reporting. The European Community’s Directive 95/46/EC is
on the protection of personal data targets protecting individual privacy in digital information and its
communication.

Following are three of the most important federal regulatory compliance mandates and a critical
private-sector standard that involve identity management, risk assessment, or both. Most organizations
implement a plan that ensures the security, confidentiality (or privacy when the information involves
personal identification of employees or consumers), and integrity of sensitive data. These plans usually
are subject to periodic tests by independent security auditors to ensure compliance.

Gramm-Leach-Bliley Act
The GLB Act defines non-public information as including a consumer’s name, address, telephone num-
ber, date of birth, social security number, and any other information that was derived from any sort of
application or form wherein the consumer provided such information to a financial institution. The GLB
Act considers at least the following types of institutions to be financial institutions: non-bank mortgage
lenders, loan brokers, some financial or investment advisers, debt collectors, tax return preparers, banks,
and real estate settlement service providers.

According to Wikipedia, GLB’s Safeguards Rule (Subtitle A: Disclosure of Nonpublic Personal Infor-
mation, codified at 15 U.S.C. Sections 6801–6809) ‘‘requires financial institutions to develop a written
information security plan that describes how the company is prepared for, and plans to continue to pro-
tect clients’ nonpublic personal information. (The Safeguards Rule also applies to information of those no
longer consumers of the financial institution.)’’

The information security plan must include

❑ Developing, monitoring, and testing a program to secure the information

❑ Change the safeguards as needed with the changes in how information is collected, stored, and
used

❑ Constructing a thorough [risk management] on each department handling the nonpublic
information

❑ Denoting at least one employee to manage the safeguards

Obviously, moving such information from an on-premises data center to a third-party’s cloud data center
will involve changes to GLB reporting and compliance auditing procedures.

Sarbanes-Oxley Act
SOX, which applies only to publicly owned companies, was enacted by congress in response to a series
of large corporate frauds, primarily those committed by Enron, WorldCom, and Tyco during the years
2000 through 2004. SOX was intended to make corporate reporting more transparent. Its provisions
aim to

120

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

❑ Reduce or eliminate conflicts of interest of independent financial auditors who also provide
consulting services, as well as those of securities analysts who receive compensation from
investment bankers

❑ Improve oversight by boards of directors’ audit committees of independent financial auditors

❑ Increase oversight by the Securities and Exchange Commission (SEC) by increasing its budget
substantially

❑ Require accounting for employee stock option compensation as an operating expense

According to Wikipedia (http://bit.ly/skaSn, http://en.wikipedia.org/wiki/Sarbanes-Oxley_Act),
the Public Company Accounting Oversight Board (PCAOB) approved Auditing Standard No. 5 for
public accounting firms on July 25, 2007. The SEC also released its interpretive guidance on June 27,
2007. The latter is generally consistent with the PCAOB’s guidance but is intended to provide guidance
for management. Both management and the independent auditor are responsible for performing their
assessment in the context of a top-down risk assessment, which requires management to base both the
scope of its assessment and evidence gathered on risk. This gives management wider discretion in its
assessment approach. These two standards together require management to

❑ Assess both the design and operating effectiveness of selected internal controls related to
significant accounts and relevant assertions, in the context of material misstatement risks

❑ Understand the flow of transactions, including IT aspects, sufficient enough to identify points at
which a misstatement could arise

❑ Evaluate company-level (entity-level) controls, which correspond to the components of the
Committee of Sponsoring Organizations of the Treadway Commission (COSO) framework
(www.coso.org/)

❑ Perform a fraud risk assessment

❑ Evaluate controls designed to prevent or detect fraud, including management override of
controls

❑ Evaluate controls over the period-end financial reporting process

❑ Scale the assessment based on the size and complexity of the company

❑ Rely on management’s work based on factors such as competency, objectivity, and risk

❑ Conclude on the adequacy of internal control over financial reporting

A key tenet of SOX is data integrity. Moving financial transactions and associated data from the corpora-
tion’s premises to a cloud data center doesn’t necessarily increase risk. However, it does affect the flow
of transactions and can influence the adequacy of internal control over financial reporting.

Health Information Technology and HIPAA
The Obama administration’s intention to have all U.S. residents move to electronic health records
(EHRs) in five years received a US$19 billion earmark for Health Information Technology (HIT) in the
American Recovery and Reinvestment Act (ARRA) of 2009 that President Obama signed into law on
February 17, 2009. On the whole, Federal privacy/security laws (HIPAA) are expanded to protect patient
health information and HIPAA privacy and security laws would apply directly to business associates
of covered entities. ARRA also prohibits the sale of a patient’s health information without the patient’s

121

Part II: Taking Advantage of Cloud Services in the Enterprise

written authorization, except in limited circumstances involving research or public health activities, or
‘‘otherwise determined by the secretary in regulations to be similarly necessary and appropriate.’’

The secretary’s unlimited right to sell patients’ health information has aroused serious objections from
privacy advocates.

HIPAA’s Privacy Rule establishes regulations for the use and disclosure of Protected Health Information
(PHI). PHI is any information held by a covered entity that concerns health status, provision of health
care, or payment for health care that can be linked to an individual. PHI has been interpreted to include
any part of an individual’s electronic medical record (EMR) or payment history, but HIPAA specifies 18
PHI identifiers in the following list. Covered entities include health plans, health-care clearinghouses,
and health care providers who transmit any health information in electronic form in connection with a
transaction covered by this subchapter (45 CFR Section 164.501).

The 18 types of identifiers of PHI were, when this book was written, as follows:

1. Names.

2. All geographical subdivisions smaller than a state, including street address, city, county,
precinct, zip code, and their equivalent geocodes, except for the initial three digits of a zip
code, if according to the current publicly available data from the Bureau of the Census: (1)
the geographic unit formed by combining all zip codes with the same three initial digits
contains more than 20,000 people; and (2) the initial three digits of a zip code for all such
geographic units containing 20,000 or fewer people is changed to 000.

3. Dates (except year) for dates directly related to an individual, including birth date,
admission date, discharge date, date of death; and all ages over 89 and all elements of
dates (including year) indicative of such age, except that such ages and elements may be
aggregated into a single category of age 90 or older.

4. Phone numbers.

5. Fax numbers.

6. Electronic mail addresses.

7. Social Security numbers.

8. Medical record numbers.

9. Health plan beneficiary numbers.

10. Account numbers.

11. Certificate/license numbers.

12. Vehicle identifiers and serial numbers, including license plate numbers.

13. Device identifiers and serial numbers.

14. Web Universal Resource Locators (URLs).

15. Internet Protocol (IP) address numbers.

122

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

16. Biometric identifiers, including finger and voice prints.

17. Full face photographic images and any comparable images.

18. Any other unique identifying number, characteristic, or code (note this does not mean the
unique code assigned by the investigator to code the data).

Any code used to replace the identifiers in datasets cannot be derived from any information related to the
individual and the master codes, nor can the method to derive the codes be disclosed. For example, the
unique code cannot include the last four digits (in sequence) of the social security number.

It’s clear from the length of the preceding list that a substantial amount of the data in the master header
record of the EHR or EMR must be encrypted to conform to HIPPA requirements for making personally
identifiable information anonymous.

NIST Special Publication 800-122, ‘‘Guide to Protecting the Confidentiality of Personally Identifiable
Information (PII)’’ (http://bit.ly/sc2G3, http://csrc.nist.gov/publications/drafts/800-122
/Draft-SP800-122.pdf), defines PII as

Information which can be used to distinguish or trace an individual’s identity, such as their
name, social security number, biometric records, etc. alone, or when combined with other
personal or identifying information which is linked or linkable to a specific individual, such as
date and place of birth, mother’s maiden name, etc.

EU directive 95/46/EC, ‘‘Protection of Individuals with Regard to the Processing of Personal Data and on
the Free Movement of Such Data,’’ (http://bit.ly/188e0N, www.cdt.org/privacy/eudirective
/EU_Directive_.html) defines PII as

Article 2a: ‘personal data’ shall mean any information relating to an identified or identifiable
natural person (’data subject’); an identifiable person is one who can be identified, directly
or indirectly, in particular by reference to an identification number or to one or more factors
specific to his physical, physiological, mental, economic, cultural or social identity.

The American Recovery and Reinvestment Act of 2009 (ARRA), which President Obama signed into law
on February 17, 2009, includes Title XIII, the Health Information Technology for Economic and Clinical
Health Act (HITECH Act), which dedicates $22 billion in federal funding to advance the use of health
information technology. Subtitle D of the HITECH Act modifies applicability of HIPAA’s security and
privacy regulations that govern health-related information as follows:

❑ Business associates of HIPAA-covered entities are now independently subject to HIPAA.

❑ Business associates are now subject to the same civil and criminal penalties as covered entities.

❑ Requirements for notification of unsecured data breaches have been added.

Requirements for notification of data breaches are similar to those for personal information of California
residents as described in the later ‘‘California Senate Bill 1386’’ section. ‘‘Unsecured’’ personal health
information generally means information that is not encrypted or secured in such as manner as to make
it unreadable to an unauthorized person. However, the Department of Health and Human Services is
instructed to issue guidance on the meaning of ‘‘unsecured’’ and other key terms.

123

Part II: Taking Advantage of Cloud Services in the Enterprise

Payment Card Industry-Data Security Standard (PCC-DSS)
The Payment Card Industry (PCI) has a Data Security Standard (PCI-DSS) that’s administered by the
PCI Security Standards Council (PCI-SSC), whose five founding members are American Express, Dis-
cover Financial Services, JCB International, MasterCard Worldwide, and Visa Inc. PCI-DSS v1.2 became
effective on October 1, 2008 v1.1 had a sunset date of December 31, 2008.

According to Wikipedia (http://bit.ly/W7pv2, http://en.wikipedia.org/wiki/PCI_DSS) and
the PCI’s web site (http://bit.ly/139Lrk, https://www.pcisecuritystandards.org/security
_standards/pci_dss.shtml), PCI-DSS v1.2 defines the Control Objectives and Requirements for
Compliance for merchants that process, store. or transmit payment cardholder data shown in the
following table:

Control Objectives PCI DSS Requirements

Build and Maintain a Secure
Network

1. Install and maintain a firewall configuration to
protect cardholder data.

2. Do not use vendor-supplied defaults for system
passwords and other security parameters.

Protect Cardholder Data 3. Protect stored cardholder data.

4. Encrypt transmission of cardholder data across
open, public networks.

Maintain a Vulnerability
Management Program

5. Use and regularly update anti-virus software on all
systems commonly affected by malware.

6. Develop and maintain secure systems and
applications.

Implement Strong Access Control
Measures

7. Restrict access to cardholder data by business
need-to-know.

8. Assign a unique ID to each person with computer
access.

9. Restrict physical access to cardholder data.

Regularly Monitor and Test
Networks

10. Track and monitor all access to network resources
and cardholder data.

11. Regularly test security systems and processes.

Maintain an Information Security
Policy

12. Maintain a policy that addresses information
security.

The preceding requirements apply only to merchants who store a cardholder’s Primary Account
Number, which usually is 16 digits in length. If the merchant uses a payment gateway organization,

124

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

which eliminates the need for the merchant to process payment card transactions, the requirements
don’t apply. PCI’s List of Validated Payment Applications page (http://bit.ly/GtXl6, https://
www.pcisecuritystandards.org/security_standards/vpa/vpa_approval_list.html?mn=&vn
=0&ap=1&rg=0) listed 24 gateway vendors and 26 payment applications on March 13, 2009, of which 25
applications were noted as ‘‘Acceptable for new deployments.’’

PCI’s Self-Assessment Questionnaire (SAQ)
The PCI provides merchants who aren’t required to undergo an onsite data security assessment by a
Qualified Security Assessor (QSA) with Self-Assessment Questionnaire (SAQ), which is a validation tool
that’s intended to assist merchants and service providers in self-evaluating their compliance with the PCI
DSS. The following table lists the five SAQ validation types, their descriptions, and the applicable SAQ
version.

SAQ Validation
Type

Description SAQ

1 Card-not-present (e-commerce or mail/telephone-order) merchants
with all cardholder data functions outsourced. (This would never
apply to face-to-face merchants.)

A

2 Imprint-only merchants with no electronic cardholder data
storage.

B

3 Stand-alone dial-up terminal merchants, no electronic cardholder
data storage.

B

4 Merchants with payment application systems connected to the
Internet, no electronic cardholder data storage.

C

5 All other merchants (not included in preceding descriptions for
SAQs A-C) and all service providers defined by a payment brand as
eligible to complete an SAQ.

D

Stores that use a secure payment gateway that’s recognized by the major payment-card firms to handle
credit card transactions don’t process, store, or transmit any credit card information on the servers; nor
do they have access to payment card ID numbers. Such merchants can use SAQ Validation Type 1 and
SAQ version A, which only requires certification that

❑ Merchant does not store, process, or transmit any cardholder data on merchant premises but
relies entirely on third-party service provider(s) to handle these functions.

❑ The third party service provider(s) handling storage, processing, and/or transmission of
cardholder data is confirmed to be PCI DSS compliant.

❑ Merchant does not store any cardholder data in electronic format.

125

Part II: Taking Advantage of Cloud Services in the Enterprise

❑ If merchant does store cardholder data, such data is only in paper reports or copies of receipts
and is not received electronically.

PCI’s Prioritized Approach Framework
Merchants with a small or no IT organization have indicated the need for a road map for gaining com-
pliance with PCI-DSS. In response, the PCI issued in March 2009 a Prioritized Approach framework to
help merchants who are not yet fully compliant with the PCI DSS understand and reduce risk while on
the road to compliance. The framework focuses on security milestones outlined in the following list for
protecting against the highest risk factors and escalating threats facing cardholder data security:

❑ If you don’t need it, don’t store it.

❑ Secure the perimeter.

❑ Secure applications.

❑ Monitor and control access to your systems.

❑ Protect stored cardholder data.

❑ Finalize remaining compliance efforts, and ensure all controls are in place.

The PCI’s Prioritized Approach for DSS 1.2 page (http://bit.ly/14AS9p, https://www
.pcisecuritystandards.org/education/prioritized.shtml) provides links to a guide document and
Excel worksheet to aid in use of the framework.

California Senate Bill 1386
California Senate Bill 1386, also called the California Information Practice Act or California Security
Breach Notification Act, requires that anyone who conducts business within the state of California and
licenses or owns computerized personal information about any California residents, comply with the
specified standards of regulation of data security, which include

❑ Defining personal data as an individual’s first initial or name and last name in conjunction with
that individual’s social security number, driver’s license number or California identification card
number, an account number, credit, or debit card number in combination with any required
security code, access code, or password that would permit access to an individual’s financial
account

❑ Notifying any resident of California whose unencrypted personal data has been acquired by an
unauthorized entity and disclosing to the resident the personal data exposed by the breach

Any affected firms or agencies that encrypt all instances of personal data are not subject to the notification
requirements of SB 1386.

SB 1386 does not define the terms encrypt or encryption, so the degree of security offered by the encryp-
tion method employed probably is subject to judicial determination.

Massachusetts’ and Nevada’s Data Privacy Laws
In 2008 Nevada and Massachusetts passed data privacy laws that require encryption of personal data.
Nevada Revised Statutes 597.970 (http://bit.ly/xzeIJ, www.leg.state.nv.us/NRs/NRS-597.html

126

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

#NRS597Sec970) requires all businesses to encrypt personally-identifiable customer data
that are transmitted electronically. Massachusetts’ 201 CMR 17.00: Standards for The Pro-
tection of Personal Information of Residents of the Commonwealth (http://bit.ly/jZTxA,
www.mass.gov/?pageID=ocaterminal&L=4&L0=Home&L1=Consumer&L2=Privacy&L3=Identity+Theft
&sid=Eoca&b=terminalcontent&f=reg201cmr17&csid=Eoca) requires encryption of personal infor-
mation on laptops and other portable data devices. The laws apply to out-of-state companies with
operations or customers in those two states as well as resident businesses. All organizations doing
business in all 50 states must comply with the data encryption requirements.

The laws define personal information as the combination of an individual’s name with a driver’s license,
credit card information, or social security number (SSN). The Wall Street Journal’s ‘‘New Data Privacy
Laws Set For Firms’’ article of October 16, 2008 provides additional details on the new legislation.
Like California’s SB 1386, Nevada’s law defines the encryption method’s cryptographic strength.
Massachusetts’ law requires use of a ‘‘128-bit or higher algorithmic process.’’

It’s only a matter of time before all U.S. states enact data privacy laws or the federal government enacts
privacy legislation that overrides the states’ regulations.

Implementing Secure Sockets Layer
Transmission Encryption for Web Roles

Azure services can enable Transport Layer Security (TLS) to use the Secure HTTP protocol (HTTPS)
for transmission of encrypted requests to and responses from production Hosted Services and Storage
Accounts for Web Roles. To enable HTTPS with TLS, add the line emphasized in Listing 5-1 to your
service’s ServiceDefinition.csdef file:

Listing 5-1: Enabling TLS for Secure HTTP WebRole transport

<!-- Must use port 80 for http and port 443 for https when running in the
cloud -->
<InputEndpoint name="HttpIn" protocol="http" port="80" />
<InputEndpoint name="HttpsIn" protocol="https" port="443" />

If you enable HTTPS transmission you must create a self-signed SSL certificate for the Development
Fabric, add it to your Personal certificate store, and then Enable SSL Connections in the project’s SSL
properties page. To avoid warning messages about lack of trust of the certificate, add the certificate to
your Trusted Root Certificate Authorities. The later ‘‘Creating a Self-Signed Certificate for the Develop-
ment Fabric’’ section describes how to create, store, and enable such a certificate.

A self-signed certificate is required because the certificate’s private key isn’t secure in the development
environment.

To request TLS in production, change http://servicename.cloudapp.net/ to https://servicename
.cloudapp.net/ in the service URL. To require HTTPS transmission with TLS, remove the line in Listing
5-1 containing HttpIn.

Listing 5-2 contains the request headers to establish TLS for a production Web Role that has a server
certificate created by a test Root Certificate Authority that you create. TCP port 443, which specifies
TLS/SSL is emphasized.

127

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 5-2: Request headers to establish a TLS connection for a WebRole

CONNECT oakleaf3.cloudapp.net:443 HTTP/1.0
User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; GTB6;
SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.5.21022;
.NET CLR 3.5.30428; .NET CLR 3.5.30729; .NET CLR 3.0.30618; MS-RTC LM 8;
InfoPath.2; OfficeLiveConnector.1.3;
OfficeLivePatch.1.3)
Proxy-Connection: Keep-Alive
Content-Length: 0
Host: oakleaf3.cloudapp.net
Pragma: no-cache

Listing 5-3 shows the response headers trapped by Fiddler2 from the oakleaf3 production Hosted
Service with the TLS security protocol specified by the highlighted Tls characters.

Listing 5-3: Response headers establishing a TLS connection for a WebRole with your
certificate

HTTP/1.1 200 Connection Established
Timestamp: 11:06:30:0857
FiddlerGateway: Direct

This is a HTTPS CONNECT Tunnel. Secure traffic flows through this connection.

Secure Protocol: Tls
Cipher: Aes 128bits
Hash Algorithm: Sha1 160bits
Key Exchange: RsaKeyX 1024bits

== Client Certificate ==========
None.
== Server Certificate ==========
[Subject]

CN=oakleaf3.cloudapp.net
[Issuer]

CN=OakLeaf CA, O=OakLeaf Systems, OU=Development, L=Oakland, S=CA, C=US
[Serial Number]

8A6ED385CA220E9942CCDD3960F4ADC6
[Not Before]

3/20/2009 4:05:42 PM
[Not After]

3/20/2017 4:05:41 PM
[Thumbprint]

248187B259A5BDCFEDE23843FC1E66D4239C59D2

The Issuer (Root Certificate Authority) is OakLeaf CA and the test server certificate’s common name (CN)
is the URI of the production service. You’ll probably find that a test certificate, rather than a commercial
server certificate from a commercial Certificate Authority (CA), such as Go Daddy, Comodo, or Thawte,
is more convenient during service development. All users of the secure service must add the test Root
Certificate Authority to their Trusted Root Certificate Authorities list.

Commercial CAs require evidence of ownership of the domain for which you seek a certificate. In
most cases, proof of ownership is represented by an e-mail address within the domain, such as

128

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

alias@cloudapp.net for the preceding example, to which the CA sends the response to a certificate
request. Obviously, this procedure won’t work for Azure, so you must obtain a commercial certificate for
the domain name you own and then specify servicename.cloudapp.net as a DNS CNAME record.

TLS v1.1 is the successor to SSLv3, and is the subject of IETF RFC 4346, ‘‘The Transport Layer Security
(TLS) Protocol Version 1.1,’’ of April 2006. SSLv3 commonly uses the 128-bit RC4 (also called ARC4 or
ARCFOUR) encryption algorithm; TLS v1.1 negotiates a CipherSuite that the web server and browser
support. HTTPS with TLS v1.1 or SSLv3 encryption and 128-bit keys are considered sufficiently secure
to protect Internet transmission of consumer banking and payment card transactions. Qualifying for
exemption from SB 1386 requires that personal information be stored as encrypted data also.

The term 128-bit specifies the length of the encryption key. As noted in RFC 4346, the United States
restricted the export of cryptographic software containing certain strong encryption algorithms when
SSLv3 and TLS 1.0 were designed. A series of cipher suites were designed to operate at reduced (40-bit)
key lengths in order to comply with those regulations. Due to advances in computer performance, these
algorithms are now unacceptably weak, and export restrictions have since been loosened to allow 128-bit
keys.

Figure 5-1 shows the AzureTableTestHarness service’s SSL page with a self-signed certificate for the
https://127.0.0.1/ loopback (localhost) URL of the Development Fabric and the test certificate for
the https://oakleaf3.cloudapp.net production URL.

Figure 5-1: Specifying self-signed and test certificates for the Development and Azure Fabrics in
the project’s SSL properties page.

129

Part II: Taking Advantage of Cloud Services in the Enterprise

Enabling TLS for Azure Data Services
HTTPS for data transport is required to secure mixed-mode services during development with personally
identifiable data but probably will not be required in a full production service where the Hosted and
Data Services are located in the same data center. Enabling TLS for transporting Azure Blobs, Tables, and
Queues requires changing http to https in the project’s ServiceConfiguration,cscfg file, as shown by the
emphasized characters in Listings 5-4 and 5-5.

Listing 5-4: Enabling SSL for secure HTTP Blob, Table, and Queue transport

<Setting name="BlobStorageEndpoint" value="https://blob.core.windows.net" />
<Setting name="QueueStorageEndpoint" value="https://queue.core.windows.net" />
<Setting name="TableStorageEndpoint" value="https://table.core.windows.net" />

Listing 5-5: Request headers to establish an SSL connection for Tables

CONNECT oakleaf3.table.core.windows.net:443 HTTP/1.1
Host: oakleaf3.table.core.windows.net
Proxy-Connection: Keep-Alive

You don’t need your own certificates for Data Services because certificates issued by the Microsoft Secure
Service Authority are valid for https://servicename.table.core.windows.net by virtue of the wild-
card (*) in the Subject header’s CN, as illustrated in Listing 5-6.

Listing 5-6: Response headers to establish an SSL connection for Tables

HTTP/1.1 200 Connection Established
Timestamp: 10:21:13:4337
FiddlerGateway: Direct

This is a HTTPS CONNECT Tunnel. Secure traffic flows through this connection.

Secure Protocol: Tls
Cipher: Aes 128bits
Hash Algorithm: Sha1 160bits
Key Exchange: RsaKeyX 1024bits

== Client Certificate ==========
None.

== Server Certificate ==========
[Subject]

CN=*.table.core.windows.net
[Issuer]

CN=Microsoft Secure Server Authority, DC=redmond, DC=corp, DC=microsoft, DC=com
[Serial Number]

5A501E5F00050000E869

130

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

[Not Before]
10/7/2008 1:32:39 PM

[Not After]
10/7/2009 1:32:39 PM

[Thumbprint]
708BFA75C5EFADD0DA55E88C75352CD6E4E2562F

The Microsoft Secure Server Authority is an Intermediate Certification Authority issued by the Microsoft
Internet Authority, which in turn is issued by the GTE CyberTrust Global Root authority. Notice the
brief (one-year) lifespan of the preceding Microsoft certificate compared with the eight-year duration of
Listing 5-3’s test certificate.

Creating a Self-Signed Certificate for the
Development Fabric

Internet Explorer’s Internet Options dialog’s Content page has a Certificates button that opens a
Certificates dialog. Mozilla Firefox offers a similar View Certificates button on its Options, Advanced,
Encryption page. Server Authentication certificates must be issued by an organization listed in
the Certificates dialog’s Trusted Root Certificate Authority list to avoid messages questioning
authenticity. For a production service, you need a certificate for a domain name you own, such as
mydomain.com that’s issued by one of the organizations on the list and a CNAME DNS record that points
to servicename.cloudapp.net. For the Development Fabric, you must create a self-signed certificate for
the Cassini Development Web server.

The ‘‘Enabling SSL Connections on Windows Azure’’ whitepaper (http://bit.ly/GbnSh,
http://msdn.microsoft.com/en-us/library/dd203056.aspx) by Jim Nakashima explains how
to set up SSL connections for both production and development servers. Scott Guthrie’s ‘‘Tip/Trick:
Enabling SSL on IIS 7.0 Using Self-Signed Certificates’’ blog post (http://bit.ly/2pJ3xG,
http://weblogs.asp.net/scottgu/archive/2007/04/06/tip-trick-enabling-ssl-on-iis7
-using-self-signed-certificates.aspx) shows you how to use IIS 7.0 to create a self-signed
certificate for localhost. Neither of these articles explains how to use MakeCert.exe to create a
certificate with a customized domain name.

As mentioned earlier, the default URL for secure services running in the Development Fabric is
https://127.0.0.1/ but IE8’s Certificates dialog doesn’t let you specify a CN other than the default
localhost or your machine’s account name. If you use the localhost certificate, you must dismiss a
warning message each time you compile and run the project. To specify a custom CN, you must use VS
2008’s MakeCert.exe command-line utility with the Visual Studio 2008 Command Prompt to create the
certificate with these parameters:

makecert.exe -n "CN=127.0.0.1" -pe -ss My -sr CurrentUser -sky exchange -m 96 -a sha1
-eku 1.3.6.1.5.5.7.3.1 -r

131

Part II: Taking Advantage of Cloud Services in the Enterprise

The following table explains the preceding parameter values:

Parameter Description

-n "CN=127.0.0.1" The x509 name of certificate, usually a web
server URL

-pe Marks the generated private key as
exportable

-ss My Specifies the certificate store to hold output
certificate

-sr CurrentUser Specifies the certificate store location
(CurrentUser or LocalMachine)

-sky exchange Key type (exchange or signature)

-m 96 Duration of the certificate’s validity period
in months

-a sha1 Algorithm (md5 default or sha1)

-eku 1.3.6.1.5.5.7.3.1 Enhanced key object identifiers (all uses)

-r Creates a self-signed certificate

The Development web server requires the self-signed certificate to be located in the CurrentUser store.

After you run the preceding command, opening the Certificates dialog displays the self-signed certificate
in your Personal certificates list, as shown in Figure 5-2.

Exporting and Importing the Issuer to the Trusted Root
Certificate Authorities List

To add the issuer of a certificate to the Trusted Root Certificate Authorities List, do the following:

1. Click the Certificates dialog’s Export button to start the Certificate Export Wizard and click
Next to open the Export Private Key dialog.

2. Select the Yes, Export the Private Key option and click Next to open the Export File Dialog.

3. Select the Personal Information Exchange – PKCS #12 (.PFX) option, mark the Include All
Certificates in the Certification Path if Possible and Export All Extended Properties check
boxes, and click Next to open the Password dialog.

4. Type and confirm a password to encrypt the private key, and click Next to open the File to
Export dialog.

5. Click Browse and navigate to your Users\UserName\Documents folder, add a ServerCerts
or similar folder, name the file 127-0-0-1DevCert.pfx or the like, and click Save to export the
certificate and open the Completing the Certificate Export Wizard dialog.

132

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

Figure 5-2: A self-signed certificate added to the Personal certificates list.

6. Click Finish to dismiss the wizard.

7. Click the Certificates dialog’s Trusted Root Certificate Authorities tab and the Import button
to open the Certificate Import Wizard and click Next to open the File to Import dialog.

8. Select Personal Information Files (*.pfx) in the list, browse to and open the file you saved in
step 5, and click Next to open the Password dialog.

9. Type the password you assigned in step 4, mark the Mark This Key as Exportable and
Generate All Extended Properties check boxes, and click Next to open the Certificate Store
dialog.

10. Accept the Place All Certificates in the Following Store option with Trusted Root Certificate
Authorities in the Certificate Store list, and click Next to open the Completing the Certificate
Import Wizard.

11. Click Finish to create the new Trusted Root Certificate Authority (see Figure 5-3).

133

Part II: Taking Advantage of Cloud Services in the Enterprise

Figure 5-3: An entry for a self-signed certificate added to the
Trusted Root Certificate Authorities list.

Test your certificate by pressing F5 to build and run the service in the Development Fabric to
verify that no warning messages occur. If you enabled both ports 80 and 443, change the URL to
https://127.0.0.1/.

Provide a copy of or access to the 127-0-0-1DevCert.pfx file so they can import it into their Personal and
Trusted Root Certificate Authorities locations.

Creating a Test Root Certificate Authority and Using It to
Sign a Test Certificate

You receive authenticity warnings if you use a self-signed certificate with a production service, so it’s
a good practice to create a test Root Certificate Authority and Certificates based on the authority. The
process is similar to that for self-signed certificates but has an additional step. You can combine both
commands in a single batch; the second command refers to the OakLeaf CA created by the first command,
as shown in Listing 5-7.

Listing 5-7: Response headers to establish an SSL connection for Tables

makecert.exe -n "CN=OakLeaf CA,O=OakLeaf
Systems,OU=Development,L=Oakland,S=CA,C=US"
-pe -ss Root -sr LocalMachine -sky exchange -m 96 -a sha1 -len 2048 -r

makecert.exe -n "CN=oakleaf3.cloudapp.net" -pe -ss My -sr CurrentUser -sky exchange
-m 96 -in "OakLeaf CA" -is Root -ir CurrentUser -a sha1 -eku 1.3.6.1.5.5.7.3.1

134

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

The following table lists descriptions of MakeCert.exe parameters not included in the previous
table:

Parameter Description

-n "O= . . . " The x509 organization name

-n "OU= . . . " The x509 organizational unit (department) name

-n "L= . . . " The x509 location (city) name

-n "S= . . . " The x509 state abbreviation or region name

-n "C= . . . " The x509 country abbreviation or name

-in OakLeaf CA The name of the issuer (Root Certification Authority)

-len 2048 Specifies a 2,048-bit key length

You must export *.pfx files of both certificates and provide them for import to developers or users of your
secure service.

Encrypting Personal Information in Azure
Storage Services

Storing encrypted personally identifiable and other highly confidential information requires encrypting
the data before storing it as an entity to an Azure Table or adding it as the payload of an Azure Blob
or Queue. .NET 3.5 provides implementations of many standard cryptographic algorithms, including
symmetrical (shared secret key) and asymmetrical (Public Key Infrastructure, PKI). Symmetrical
encryption for data streams consumes far fewer resources than asymmetrical encryption. Employing
symmetrical encryption contributes to the scalability of hosted services, especially for large Azure
Blobs. .NET 3.5’s managed symmetric cryptography classes in the System.Security.Cryptography
namespace include special stream class called a CryptoStream that encrypts data read into
the stream.

❑ AesManaged provides a managed implementation of the Advanced Encryption Standard (AES)
symmetric algorithm. AES was established as Federal Information Processing Standard (FIPS)
197 by the NIST on November 26, 2001.

❑ DESCryptoServiceProvider defines a wrapper over the cryptographic service provider (CSP)
version of the Data Encryption Standard (DES) algorithm.

❑ RC2CryptoServiceProvider defines a wrapper over the CSP implementation of the RC2 algo-
rithm.

❑ RijndaelManaged accesses the managed version of the Rijndael algorithm, on which AES is
based. AES has a fixed block size of 128 bits (16 bytes) and a key size of 128, 192, or 256 bits;

135

Part II: Taking Advantage of Cloud Services in the Enterprise

Rijndael can be specified with block and key sizes in any multiple of 32 bits, with a minimum of
128 bits and a maximum of 256 bits.

❑ TripleDESCryptoServiceProvider defines a wrapper over the CSP version of the TripleDES
algorithm.

AES is a federal standard so it is likely to be accepted by both federal and state agencies as an ade-
quate means of securing personally identifiable information. You can learn more about the preceding
cryptographic algorithms from their Wikipedia entries.

Encrypting and Decrypting Strings with AES
The AzureTableTestHarnessSSL.sln project in the \WROX\Azure\Chapter05 folder is based on Chapter
4’s SampleWebCloudService.sln project. The project encrypts PII from the Northwind Customers table
with AesManaged when creating or updating entities, and decrypts it for presentation in the GridView
control and bulk updates. The AesManagedEncryption.cs file contains the EncryptDecrypt class, which
provides Encrypt and Decrypt methods for UTF-8-encoded strings, which the StorageClient’s HTTP
request header specifies as the Accept-Charset header and the response delivers as Content-Type:
application/atom+xml;charset=utf-8. The encrypted bytes are delivered as a Base64-encoded string.

Encrypting Plaintext to Ciphertext
The Password-Based Key Derivation Function (PBKDF2) creates a shared secret (encryption/decryption)
key from a combination of password and salt byte arrays. Salt bytes represent an index into a large set
of keys derived from the password. It need not be kept secret. In the example that follows, the password
and salt are embedded literal strings. Encrypting the password with a public-private key pair could be
used to increase security and the Windows Data Protection API (DPAPI) can provide secure storage for
the private key.

PBKDF2 is part of RSA Laboratories’ Public-Key Cryptography Standards (PKCS) #5 v2.0,
which is published by the IETF as RFC 2898 also (www.ietf.org/rfc/rfc2898.txt). For
more information about DPAPI see the ‘‘Windows Data Protection’’ whitepaper on MSDN
(http://msdn.microsoft.com/en-us/library/ms995355.aspx).

When this book was written the Azure Fabric did not support DPAPI security.

Listing 5-8 contains the encryption code, which returns the Base64-encoded ciphertext.

Listing 5-8: Method for encrypting a plaintext UTF8 string with the AesManaged
encryption class

public static string Encrypt(string input)
{

try
{

// Plaintext string input
string data = input;
// Convert to an array of UTF-8 bytes

136

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

byte[] utfData = UTF8Encoding.UTF8.GetBytes(data);

byte[] saltBytes = UTF8Encoding.UTF8.GetBytes("S0d1umChl0r1de");
// Use the PBKDF2 standard for password-based key generation
Rfc2898DeriveBytes rfc = new Rfc2898DeriveBytes("K3yPassw0rd!", saltBytes);

// Advanced Encryption Standard symmetric encryption algorithm
AesManaged aes = new AesManaged();

// Set AES parameters
aes.BlockSize = aes.LegalBlockSizes[0].MaxSize;
aes.KeySize = aes.LegalKeySizes[0].MaxSize;
aes.Key = rfc.GetBytes(aes.KeySize / 8);
aes.IV = rfc.GetBytes(aes.BlockSize / 8);

// Encryption
ICryptoTransform encryptTransf = aes.CreateEncryptor();

// Output stream, can be also a FileStream
MemoryStream encryptStream = new MemoryStream();
CryptoStream encryptor =

new CryptoStream(encryptStream, encryptTransf, CryptoStreamMode.Write);

// Write, flush, clear and close the encryptor
encryptor.Write(utfData, 0, utfData.Length);
encryptor.Flush();
encryptor.Clear();
encryptor.Close();

// Create a byte array and convert it to a Base64-encoded string
byte[] encryptBytes = encryptStream.ToArray();
string encryptedString = Convert.ToBase64String(encryptBytes);

return encryptedString;
}
catch (Exception exEncr)
{

string msg = "AES Encryption error: " + exEncr.Message;
if (RoleManager.IsRoleManagerRunning)

RoleManager.WriteToLog("Critical", msg);
return input;

}
}

Invoking the CryptoStream.Clear() method is a call to IDisposable.Dispose, which removes
the stream from memory to provide additional security and lets its resources be reallocated for other
purposes.

Listing 5-9 shows the HTTP request header for the ALFKI entity with CompanyName, ContactName,
ContactTitle, Address, PostalCode, Phone, and Fax attribute values encrypted and emphasized.
Employer names other than for sole proprietorships generally aren’t considered to be PII, but are
encoded to demonstrate techniques for decrypting, modifying, and encrypting data updates.

137

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 5-9: HTTP request headers and payload to add an encrypted entity to the
OakLeaf3 table

POST /CustomerTable HTTP/1.1
User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Sun, 22 Mar 2009 23:02:36 GMT
Authorization: SharedKeyLite oakleaf3:Uz0M8ww4jzDdmEkFvC3t2rITMWQZ02almi3oPfpfBAE=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx
Content-Type: application/atom+xml
Host: oakleaf3.table.core.windows.net
Content-Length: 1181
Expect: 100-continue

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">

<title />
<updated>2009-03-22T23:02:36.6079953Z</updated>
<author>
<name />

</author>
<id />
<content type="application/xml">
<m:properties>

<d:Address>or2WWgWMlRYh0uHlmpxeDQ==</d:Address>
<d:City>Berlin</d:City>
<d:CompanyName>3AsJUvWGgaFxQts7R0jQXV8ow1tEMu0HCdhzq2XSS54=</d:CompanyName>
<d:ContactName>RYcJfx+StUtjayIUR3u1RQ==</d:ContactName>
<d:ContactTitle>CUWrBpIJKUstOSrs070KVho8dSkjUc+5z4rkk8qQXPY=</d:ContactTitle>
<d:Country>Germany</d:Country>
<d:CustomerID>ALFKI</d:CustomerID>
<d:Fax>KoVXBXayW6A9C2B3nDwjuA==</d:Fax>
<d:PartitionKey>Customer</d:PartitionKey>
<d:Phone>o5XG1kwxVOu7OVZoiJAVGg==</d:Phone>
<d:PostalCode>t5/s0kjSCVQo7OD0jw896w==</d:PostalCode>
<d:Region m:null="true" />
<d:RowKey>ALFKI</d:RowKey>
<d:Timestamp m:type="Edm.DateTime">0001-01-01T00:00:00</d:Timestamp>

</m:properties>
</content>

</entry>

Listing 5-10 contains the HTTP response headers and confirming Atom <entry> element as the payload.

Listing 5-10: Response headers and payload from adding an encrypted entity to the
OakLeaf3 table

HTTP/1.1 201 Created
Cache-Control: no-cache

138

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

Transfer-Encoding: chunked
Content-Type: application/atom+xml;charset=utf-8
ETag: W/"datetime’2009-03-22T23%3A02%3A01.2831774Z’"
Location:
http://oakleaf3.table.core.windows.net/CustomerTable(PartitionKey=’Customer’,

RowKey=’ALFKI’)
Server: Table Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: cd745998-27fe-47a6-8194-e51d0aaae7ee
Date: Sun, 22 Mar 2009 23:02:00 GMT

640
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xml:base="http://oakleaf3.table.core.windows.net/"

xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
m:etag="W/"datetime’2009-03-22T23%3A02%3A01.2831774Z’""
xmlns="http://www.w3.org/2005/Atom">

<id>http://oakleaf3.table.core.windows.net/CustomerTable(PartitionKey=’Customer’,
RowKey=’ALFKI’)</id>

<title type="text"></title>
<updated>2009-03-22T23:02:01Z</updated>
<author>
<name />

</author>
<link rel="edit" title="CustomerTable"
href="CustomerTable(PartitionKey=’Customer’,RowKey=’ALFKI’)" />

<category term="oakleaf3.CustomerTable"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

<content type="application/xml">
<m:properties>

<d:PartitionKey>Customer</d:PartitionKey>
<d:RowKey>ALFKI</d:RowKey>
<d:Timestamp m:type="Edm.DateTime">2009-03-22T23:02:01.2831774Z</d:Timestamp>
<d:Address>or2WWgWMlRYh0uHlmpxeDQ==</d:Address>
<d:City>Berlin</d:City>
<d:CompanyName>3AsJUvWGgaFxQts7R0jQXV8ow1tEMu0HCdhzq2XSS54=</d:CompanyName>
<d:ContactName>RYcJfx+StUtjayIUR3u1RQ==</d:ContactName>
<d:ContactTitle>CUWrBpIJKUstOSrs070KVho8dSkjUc+5z4rkk8qQXPY=</d:ContactTitle>
<d:Country>Germany</d:Country>
<d:CustomerID>ALFKI</d:CustomerID>
<d:Fax>KoVXBXayW6A9C2B3nDwjuA==</d:Fax>
<d:Phone>o5XG1kwxVOu7OVZoiJAVGg==</d:Phone>
<d:PostalCode>t5/s0kjSCVQo7OD0jw896w==</d:PostalCode>

</m:properties>
</content>

</entry>
0

Decrypting Ciphertext to Plaintext
Symmetrical encryption implies that decrypting the encrypted Base64 string parallels the encryption
process, as Listing 5-11 demonstrates.

139

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 5-11: Method for decrypting an encrypted string with the AesManaged
encryption class

public static string Decrypt(string base64Input)
{

try
{

//byte[] encryptBytes = UTF8Encoding.UTF8.GetBytes(input);
byte[] encryptBytes = Convert.FromBase64String(base64Input);

byte[] saltBytes = UTF8Encoding.UTF8.GetBytes("S0d1umChl0r1de");
// Use the PBKDF2 standard for password-based key generation
Rfc2898DeriveBytes rfc = new Rfc2898DeriveBytes("K3yPassw0rd!", saltBytes);

// Advanced Encryption Standard symmetric encryption algorithm
AesManaged aes = new AesManaged();

// Set AES parameters
aes.BlockSize = aes.LegalBlockSizes[0].MaxSize;
aes.KeySize = aes.LegalKeySizes[0].MaxSize;
aes.Key = rfc.GetBytes(aes.KeySize / 8);
aes.IV = rfc.GetBytes(aes.BlockSize / 8);

// Decryption
ICryptoTransform decryptTrans = aes.CreateDecryptor();

// Output stream, can be also a FileStream
MemoryStream decryptStream = new MemoryStream();
CryptoStream decryptor =

new CryptoStream(decryptStream, decryptTrans, CryptoStreamMode.Write);

// Write, flush, clear and close the encryptor
decryptor.Write(encryptBytes, 0, encryptBytes.Length);
decryptor.Flush();
decryptor.Clear();
decryptor.Close();

// Create UTF string from decrypted bytes
byte[] decryptBytes = decryptStream.ToArray();
string decryptedString =

UTF8Encoding.UTF8.GetString(decryptBytes, 0, decryptBytes.Length);

return decryptedString;
}
catch (Exception exDecr)
{

string msg = "AES Decryption error: " + exDecr.Message;
if (RoleManager.IsRoleManagerRunning)

RoleManager.WriteToLog("Critical", msg);
return base64Input;

}
}

140

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

Listings 5-9 and 5-11 are based on a C# example by H. W. Soderlund (Encrypt / Decrypt in Silverlight,
http://bit.ly/128fNZ, http://silverlight.net/forums/p/14449/49982.aspx).

The sample project decrypts pages of 12 or fewer entities. Listing 5-12 is the HTTP request for the first 12
entities.

Listing 5-12: Request headers for the first 12 entities from the OakLeaf3 table

GET /CustomerTable()?$top=12 HTTP/1.1
User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Mon, 23 Mar 2009 18:03:12 GMT
Authorization: SharedKeyLite oakleaf3:WpVjGB/HrOReR62rLV7PphAHpvg4ZsqPReY2V0+Jmpg=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx
Host: oakleaf3.table.core.windows.net

Listing 5-13 shows the response headers and encrypted payload for the first of 12 entities, which the
client decrypts. Intercepting the response with a web debugger, such as Fiddler2, proves that the PII has
been stored as encrypted data in the table.

Listing 5-13: Response headers for the first of 12 encrypted Entities from the
OakLeaf3 table

HTTP/1.1 200 OK
Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/atom+xml;charset=utf-8
Server: Table Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: e7d863f7-0aa3-4b75-bc91-da82b54be9bf
x-ms-continuation-NextPartitionKey: Customer
x-ms-continuation-NextRowKey: CENTC
Date: Mon, 23 Mar 2009 18:02:41 GMT

4377
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<feed xml:base="http://oakleaf3.table.core.windows.net/"
xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">

<title type="text">CustomerTable</title>
<id>http://oakleaf3.table.core.windows.net/CustomerTable</id>
<updated>2009-03-23T18:02:42Z</updated>
<link rel="self" title="CustomerTable" href="CustomerTable" />
<entry m:etag="W/"datetime’2009-03-23T17%3A44%3A15.1933594Z’"">
<id>http://oakleaf3.table.core.windows.net/CustomerTable(PartitionKey=

‘Customer’, RowKey=’ALFKI’)</id>
<title type="text"></title>
<updated>2009-03-23T18:02:42Z</updated>
<author>

<name />

Continued

141

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 5-13: Response headers for the first of 12 encrypted Entities from the
OakLeaf3 table (continued)

</author>
<link rel="edit" title="CustomerTable"

href="CustomerTable(PartitionKey=’Customer’,RowKey=’ALFKI’)" />
<category term="oakleaf3.CustomerTable"

scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
<content type="application/xml">

<m:properties>
<d:PartitionKey>Customer</d:PartitionKey>
<d:RowKey>ALFKI</d:RowKey>
<d:Timestamp

m:type="Edm.DateTime">2009-03-23T17:44:15.1933594Z
</d:Timestamp>
<d:Address>or2WWgWMlRYh0uHlmpxeDQ==</d:Address>
<d:City>Berlin</d:City>
<d:CompanyName>3AsJUvWGgaFxQts7R0jQXV8ow1tEMu0HCdhzq2XSS54=</d:CompanyName>
<d:ContactName>RYcJfx+StUtjayIUR3u1RQ==</d:ContactName>
<d:ContactTitle>

CUWrBpIJKUstOSrs070KVho8dSkjUc+5z4rkk8qQXPY=
</d:ContactTitle>
<d:Country>Germany</d:Country>
<d:CustomerID>ALFKI</d:CustomerID>
<d:Fax>KoVXBXayW6A9C2B3nDwjuA==</d:Fax>
<d:Phone>o5XG1kwxVOu7OVZoiJAVGg==</d:Phone>
<d:PostalCode>t5/s0kjSCVQo7OD0jw896w==</d:PostalCode>

</m:properties>
</content>

</entry>
...
</feed>
0

Orchestrating Encryption and Decryption in a TableStorageEntity Instance
The sample project’s Customers.cs file contains the CustomerDataModel class, which represents the
table’s object model, is the central object to whose members you apply the Encrypt and Decrypt meth-
ods for CRUD operations. The CustomerDataModel class inherits from the StorageClient class library’s
TableStorageEntity abstract class.

Listing 5-14 shows the code for the CustomerDataModel class members getters and setters, including
those that handle PII. The emphasized getArg and setArg method calls and methods handle decryption
and encryption, respectively. Set the _Default.isCreateCusts flag to true to prevent decryption when a
Get operation closely precedes a Set operation, which occurs when adding new or updating entities.

Listing 5-14: Code for encrypting and decrypting CustomerDataModel members

public class CustomerDataModel : TableStorageEntity
{

public string base64Regex =

142

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

" ˆ (?:[A-Za-z0-9+/]{4})*(?:[A-Za-z0-9+/]{2}==|[A-Za-z0-9+/]{3}=)?$";

// Default parameterless constructor
public CustomerDataModel() : base()
{

RowKey = Guid.NewGuid().ToString();
PartitionKey = "Customers";

}
// Partial parameterized constructor
public CustomerDataModel(string partitionKey, string rowKey)

: base(partitionKey, rowKey)
{
}

public string CustomerID { get; set; }

// Encrypted personally identifiable information
private string companyName;
public string CompanyName
{

get
{

return getArg(companyName);
}
set
{

companyName = setArg(value);
}

}

// Process getter
public string getArg(string getVar)
{

if (getVar != null)
if (Regex.IsMatch(getVar, base64Regex))

if (_Default.isCreateCusts)
// Get encrypted value from object
return getVar;

else
// Decrypt value from object
return EncryptDecrypt.Decrypt(getVar);

else
// Get plaintext value
return getVar;

else
return null;

}

// Process setter
public string setArg(string setVar)
{

if (Regex.IsMatch(setVar, base64Regex))
return setVar;

else

Continued

143

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 5-14: Code for encrypting and decrypting CustomerDataModel members
(continued)

return EncryptDecrypt.Encrypt(setVar);
}

private string contactName;
public string ContactName
{

get
{

return getArg(contactName);
}
set
{

contactName = setArg(value);
}

}

private string contactTitle;
public string ContactTitle
{

get
{

return getArg(contactTitle);
}
set
{

contactTitle = setArg(value);
}

}

private string address;
public string Address
{

get
{

return getArg(address);
}
set
{

address = setArg(value);
}

}

private string postalCode;
public string PostalCode
{

get
{

return getArg(postalCode);
}
set
{

postalCode = setArg(value);

144

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

}
}

private string phone;
public string Phone
{

get
{

return getArg(phone);
}
set
{

phone = setArg(value);
}

}

private string fax;
public string Fax
{

get
{

return getArg(fax);
}
set
{

fax = setArg(value);
}

}

// Not personally identifiable data
public string City { get; set; }
public string Region { get; set; }
public string Country { get; set; }

}

Analyzing Encryption’s Performance Hit
As you would expect, encryption exacts a serious toll on table CRUD performance, although deletions
are only slightly affected. The following table lists the times in seconds to execute the sample project’s
five operational features in the Azure Fabric (production) and Developer Fabric with and without
encryption.

Encrypting with AES’s 128-bit block size increases data payload by two bytes average. Base64 encoding
increases payload by four bytes for each group of three bytes encoded; the formula is Base64Bytes =
((UTF8Bytes + 3 – (UTF8Bytes MOD 3)) /3) × 4. CPU cycles to encrypt and decrypt data contribute more
performance loss by far than payload size increase.

You can increase the speed of Count operations by adding a flag to prevent decryption and encryption
when counting instances iteratively.

145

Part II: Taking Advantage of Cloud Services in the Enterprise

Operation Azure Fabric
HTTP Plain

Azure Fabric
HTTPS Encr

Dev. Fabric
HTTP Plain

Dev. Fabric
HTTPS Encr

Create 91 and display 12
Customer entities

5.716 s. 36.9 s. 15.7 s. 69.7 s.

Count 91 Customer
entities

0.219 s. 2.11 s. 0.298 s. 4.37 s.

Delete 91 Customer
entities

5.51 s. 6.81 s. 10.3 s. 11.2 s.

Update 91 Customer
entities

5.66 s. 24.9 s. 16.0 s. 91.5 s.

Display page of 12
Customer entities

0.473 s. 2.35 s. 0.307 s. 4.54 s.

Salt values prevent encoded literal values for LINQ where constraints from working with encoded
columns because salt causes encrypting the same value twice to produce different cipher text. LINQ
orderby operations on encrypted attribute values won’t result in the desired sequence of items, so you
can’t conduct range searching. Behavior of secondary indexes, which Microsoft said were planned for v1
of Azure Tables but weren’t available for testing when this book was written, is likely to be adversely
affected by encryption.

You can add attributes to hold hash values of the original cleartext values and then perform an equality
search. To prevent dictionary attacks, you can add a secret hash-based message authentication code
(HMAC). The System.Security.Cryptography.HMAC class has ComputeHash() and Create() members
for HMACs.

The Azure team defines secondary indexes as indexes on attributes that aren’t part of the primary key.

Comparing Client-Side Encryption with SQL Server’s Column-Based
Server Encryption

SQL Server 2005 introduced column-level and row-level encryption, often called cell-level encryp-
tion, as well as key management services. My ‘‘Encrypt and Decrypt Data in Yukon’’ article
(http://bit.ly/OseDw, http://visualstudiomagazine.com/features/article.aspx?editorialsid
=1296) in Visual Studio Magazine’s August 2005 issue describes how SQL Server’s first self-contained
encryption processes work and offers a downloadable VB.NET 2005 sample project. Encrypted columns
must use the varbinary data type.

Column-level cryptographic operations don’t reduce performance as dramatically as client-
side operations, but they can interfere with the performance of indexes. T-SQL WHERE and
ORDER BY clauses on encrypted columns require HMACs and exhibit issues similar to those for
Azure Tables. Range searches aren’t possible with hashed-value columns. Laurentiu Cristofor’s
December, 2005 ‘‘SQL Server 2005: searching encrypted data’’ blog post (http://bit.ly/M16qG,
http://blogs.msdn.com/lcris/archive/2005/12/22/506931.aspx) describes these and other issues
with cell-level encryption.

146

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

The SQL Azure Database team answered my ‘‘Will SDS support Database Encryption, certificate
and key management?’’ question on March 12, 2009 with the following statement: ‘‘Database
encryption? Not initially, but it’s on the list and as we have demonstrated — if there is sufficient
customer demand, it will be one of the first things we add after v1.’’ (http://bit.ly/cTWjP,
http://blogs.msdn.com/ssds/archive/2009/03/12/9471765.aspx).

Understanding SQL Server 2008’s Transparent Data Encryption
When this book was written Microsoft was in the process of upgrading SDS from a customized version of
SQL Server 2005 that used an Entity-Attribute-Value data model to fully relational SQL Server 2008. SQL
Server 2008 added Transparent Data Encryption (TDE), which imposes a cryptographic layer between
the SQL Server data engine and the file system. The primary advantages of TDE, which encrypts the
entire database (including backup and log files), over cell level are that it encrypts and decrypts data at
the page level as it moves between files and memory and doesn’t increase data size. TDE moots issues of
what data is PII and what is not; everything is encrypted.

One of TDE’s primary architectural criteria was to meet the requirements of PCI-DSS, SB 1386, and other
legislation in process when SQL Server 2008 was in development with minimum effort by database
administrators (DBAs). Unfortunately, SDS won’t support TDE.

You can learn more about TDE from the ‘‘Database Encryption in SQL Server 2008 Enterprise Edition’’
technical article (http://bit.ly/3wcuXw, http://msdn.microsoft.com/en-us/library/cc278098
.aspx), Laurentiu Cristofor’s October 2007 ‘‘SQL Server 2008: Transparent data encryption
feature — a quick overview’’ blog post (http://bit.ly/zf9Uk, http://blogs.msdn.com/lcris
/archive/2007/10/03/sql-server-2008-transparent-data-encryption-feature-a-quick-
overview.aspx), and Joe Yong’s ‘‘SQL Server 2008 TDE: Encryption You Can Use!’’ January 2008
blog post (http://bit.ly/ACOKb, http://blog.scalabilityexperts.com/2008/01/08/93/).

Auditing Conformance to Regulatory and
Industry Standards

SOX Section 404 requires ‘‘an assessment, as of the end of the most recent fiscal year of the Company, of
the effectiveness of the internal control structure and procedures of the issuer for financial reporting.’’
According to Wikipedia, the SEC’s interpretive guidance makes ‘‘both management and the external
auditor responsible for performing their assessment in the context of a top-down risk assessment, which
requires management to base both the scope of its assessment and evidence gathered on risk.’’ As noted
in the earlier ‘‘Sarbanes-Oxley Act’’ section, management must ‘‘[u]nderstand the flow of transactions,
including IT aspects, sufficient enough to identify points at which a misstatement could arise.’’

An unreported violation of the HIPAA regulations for protecting PII in PHI or failure to encrypt all
stored PII related to credit card transactions greatly increases risk of enforcement actions that could
threaten the firm’s financial stability. Data center or network outages that interrupt access to cloud-based
application, storage, or both for a substantial period of time could cause serious adverse financial affects.
Management and independent auditors who vouch for the accuracy of financial statements share liability
for misstatements. The firm’s current internal IT controls and procedures presumably meet the adequacy
requirements of the SOX ‘‘internal control report’’ for on-premises applications and data. However,

147

Part II: Taking Advantage of Cloud Services in the Enterprise

it’s not likely that management or independent auditors will have access to a cloud service provider’s
facilities and operating personnel in order to make such an assessment of off-premises IT operations.

Statement on Auditing Standards No. 70 (SAS 70)
The American Institute of Certified Public Accountants (ICPA) Statement on Auditing Standards No. 70:
Service Organizations (SAS 70), ‘‘The Effect of Information Technology on the Auditor’s Consideration
of Internal Control in a Financial Statement Audit,’’ requires independent financial auditors to consider
information technology as part of overall internal control.

SAS 70 Type I or II governs an examination of a service organization, such as a cloud ser-
vices provider, that represents that the organization has been through an in-depth audit of
its control objectives and activities with respect to the services provided. SAS 70 Wikipedia
(http://en.wikipedia.org/wiki/SAS_70) defines the two SAS 70 audit types as follows:

❑ A Type I service auditor’s report includes the service auditor’s opinion on the fairness of the pre-
sentation of the service organization’s description of controls that had been placed in operation
and the suitability of the design of the controls to achieve the specified control objectives.

❑ A Type II service auditor’s report includes the information contained in a Type I service audi-
tor’s report and also includes the service auditor’s opinion on whether the specific controls were
operating effectively during the period under review.

SOX representations as to the adequacy of internal controls are for a period of one year, so a Type II
report is required. If you have sufficient leverage, you should request that the SAS 70 audit specify the
extent of GLB, SOX, HIPAA, and PCI-DSS compliance and describe how the service firm has instituted
control objectives to meet the SLAs it offers.

SAS 70 (www.sas70.com/index2.htm) is a web site dedicated to the SAS 70 auditing standard and
third-party assurance for service organizations.

Frederick Green’s ‘‘Compliance with Sarbanes-Oxley and SAS 94: The Critical Role of Application Secu-
rity in Internal Control’’ paper (http://bit.ly/AMVgr, www.nysscpa.org/committees/emergingtech
/sarbanes_act.htm) explains how SAS 94 relates to SOX.

The ISO/IEC 27001:2005 Standard
ISO/IEC 27001 (Information technology–Security techniques–Information Security Management
Systems–Requirements) is an international standard for Information Security Management Sysems
(ISMSs). According to the ISO 27001 web site (www.27001.com):

An ISO/IEC 27001 compliant system will provide a systematic approach to ensuring
the availability, confidentiality and integrity of corporate information. Using con-
trols based on indentifying and combating the entire range of potential risks to the
organization’s information assets.

The standard draws on the expertise and knowledge of experienced information secu-
rity practitioners in a wide range of significant organizations across more than 40
countries, to set out the best practice in information security. And is increasingly used

148

Chapter 5: Minimizing Risk When Moving to Azure Cloud Services

by firms to demonstrate regulatory compliance and effective business risk manage-
ment, as well as helping them to prepare and position themselves for all new and
emerging regulations.

An ISO/IEC 27001-certificated ISMS will ensure that you are in compliance with
the whole range of information-related legislation, including (as applicable) HIPAA,
GLBA, SB 1386 and other State breach laws, PIPEDA, FISMA, EU Safe Harbor regula-
tions, and so on.

An ISO/IEC 27001-certificated ISMS will ensure that you have in place the general
control environment on which a successful SOX s404 report depends.

ISO/IEC 27001:2005 is intended to be used in conjunction with ISO/IEC 27002:2005 (‘‘Information
technology–Security techniques–Code of practice for information security management’’), which was
formerly identified as ISO/IEC 17799. ISO/IEC 27002:2005 lists security control objectives and recom-
mends a range of specific security controls.

Azure’s SAS 70 and ISO/IEC 27001:2005
Audits and Certifications

Charlie McNerney, Microsoft’s General Manager, Business and Risk Management, Global Foun-
dation Services posted ‘‘Securing Microsoft’s Cloud Infrastructure’’ (http://bit.ly/VeAWD,
http://blogs.technet.com/gfs/archive/2009/05/27/securing-microsoft-s-cloud
-infrastructure.aspx) to the Global Foundation Services Team Blog on May 27, 2009. The post
announced the release of a ‘‘Security Microsoft’s Cloud Infrastructure’’ whitepaper published in
May 2009 (http://bit.ly/18TKFy, www.globalfoundationservices.com/security/documents
/SecuringtheMSCloudMay09.pdf) and ‘‘Independent, third-party validation of . . . Microsoft’s
cloud infrastructure achieving both SAS 70 Type I and Type II attestations and ISO/IEC 27001:2005
certification.’’

Although McNerney wrote, ‘‘We are proud to be one of the first major online service providers to achieve
ISO 27001 certification for our infrastructure,’’ searches for claims by other cloud vendors of ISO/IEC
27001 certification for their PaaS or IaaS services returned no hits when this book was written.

Service-Level Agreements and Business Interruption Risk
The ‘‘Maximizing Data Availability and Minimizing Security Risks’’ topic near the beginning of the
chapter briefly described typical SLAs. SLAs are de rigueur for off-premises IT providers of computing,
web, and storage services. When this book was written, obtaining coverage by cloud computing users
for business interruption risk was very problematic. As cloud computing becomes an accepted business
practice and actuaries can predict the probability of provider outages of various durations, casualty
carriers undoubtedly will compete to provide business interruption coverage.

Summary
Migrating from on-premises data centers to cloud computing and data storage services, such as those
offered by the Windows Azure Platform, require a substantial amount of up-front analysis that’s well
beyond the realm of traditional application development and database administration. Top management

149

Part II: Taking Advantage of Cloud Services in the Enterprise

and the IT staff are likely to be the major hurdle to moving selective computing and data storage opera-
tions off premises because of data security and integrity concerns. Data centers run by organizations with
major Internet presences, such as Microsoft, Amazon, and Google, are likely to be as or more secure than
those of prospective enterprise-grade customers.

A common goal of government agencies and established firms is risk avoidance; thus interest in and,
ultimately, adoption of cloud computing by government agencies will validate private-sector decisions
to take advantage of cloud services. NIST’s Information Technology Laboratory is in the forefront of
developing cloud computing standards for federal agencies. Standards developed by NIST probably will
become the baseline for future industry specifications.

The GLB Act and HIPAA contain federal regulations to protect U.S. residents’ non-public and personally
identifiable information; California’s SB 1386 requires notification of unauthorized access of California
residents’ PII. PCI-DSS dictates procedures for minimizing the risk of exposure of credit- and debit-card
holders’ PII in conjunction with card ID numbers. SOX requires implementation of internal controls
to minimize the misstatements of financial risks; breaching any governmental regulation or PCI-DSS
standard certainly implies financial peril, which might be unknown to management or independent
auditors when issuing a yearly SOX compliance report.

Data is at the greatest risk of exposure while it’s transiting the Internet. The secure HTTPS protocol
with SSL or TLS encryption has proven safe for conducting personal banking and credit card purchase
operations over the Internet. HTTPS is reasonably easy to implement for Azure Hosted Services by using
Visual Studio’s MakeCert.exe command-line utility and IE 8’s Certificates dialog. Enabling HTTPS for
Data Services within or between data centers involves only a change to a few characters in the project’s
ServiceConfiguration.cscfg file.

The chapter’s AzureTableTestHarness.sln sample application demonstrates techniques for client-side
symmetrical encryption and decryption of PII in Azure Tables with .NET 3.5’s AesManaged cryptography
provider class. Encrypting PII, such as CompanyName, ContactName, ContactTitle, Address, Postal-
Code, Phone, and Fax attributes of the Northwind Customers table doesn’t involve a substantial amount
of added code but it does exact a major-scale performance penalty for most CRUD operations.

If the Azure team is able to implement SQL Server 2005’s server-side cell-level encryption in SQL Azure
Database v1, you’ll be able to encrypt and decrypt PII for HIPAA, PCI-DSS, and SB 1386 compliance
with much less development and testing time and better performance than for client-side encryption.
Availability of SQL Server 2008’s Transparent Data Encryption will make compliance even simpler by
encrypting and decrypting entire databases on the fly.

Microsoft appears to be the first PaaS provider that offers both SAS 70 attestation and ISO/IEC 27001:2005
certification by an independent auditor. These audits will compensate, at least in part, for Microsoft’s late
entrance to the cloud computing services market.

150

Authenticating
and Authorizing

Service Users

The pages of sample projects in Chapters 4, ‘‘Scaling Azure Table and Blob Storage’’ and 5,
‘‘Minimizing Risk When Moving to Azure Cloud Services’’ are available to anyone who knows
the name of the cloud service; they require no user authentication or role-based authorization
whatsoever. Few real-world services are likely to allow public access other than to simple
demonstration versions. At the least, they’ll require all production users to log into the Hosted
Service as a member of one or more predefined role(s), such as user, reader, writer, supervisor, or
administrator. A common method of securing access to a WebRole running on Windows Azure is
to use an implementation of ASP.NET Membership Services that’s customized to accommodate the
cloud-computing infrastructure.

An alternative to a full-scale implementation of ASP.NET Membership Services and role
management is basic Windows Live ID (WLID) authentication. A May 2009 update to the Azure
Services Development Portal simplified WLID authentication by automatically adding a Live
Services Existing APIs project for each existing and new Hosted Services project you create. The
Windows Live ID Web Authentication SDK 1.2 and Windows Live Tools for Microsoft Visual
Studio 2008 provide sample code and ASP.NET server controls that you can use to implement
WLID authentication for Azure projects in production.

Taking Advantage of ASP.NET Membership
Services

The ‘‘Introduction to Membership’’ online help topic (http://bit.ly/4iCzDz,
http://msdn.microsoft.com/en-us/library/yh26yfzy.aspx) describes a prebuilt set of
facilities for validating user credentials, which are stored in SQL Server [Express] tables, for access
to web sites. ASP.NET Membership Services enable

Part II: Taking Advantage of Cloud Services in the Enterprise

❑ Creating new users and passwords.

❑ Storing membership information (user names, passwords, and supporting data). By default
membership uses SQL Server but can accommodate Active Directory or an alternative data
store.

❑ Changing and resetting passwords.

❑ Identifying authenticated users to applications.

❑ Specifying a custom membership provider, such as one designed for use with WebRoles
running under the Development Fabric with locally stored or cloud-based data, or under the
Azure Fabric with Azure Tables and Blobs.

You can review and post membership questions and answers in the ASP.NET Security Forum
(http://forums.asp.net/25.aspx).

ASP.NET Login Controls
The following ASP.NET login controls let you create a complete authentication system that requires little
code:

❑ ChangePassword lets a user change her password by supplying the original password, and then
creating and confirming the new password.

❑ CreateUserWizard control collects user name, password, password confirmation, e-mail alias,
security question, and security answer information from new users. By default, the wizard adds
the new user to the system.

❑ Login contains text boxes for entering the user name and password and a check box that enables
users to store their identity using ASP.NET membership for automatic authentication the next
time they start the service.

❑ LoginStatus displays a login link for unauthenticated users and a logout link for authenticated
users.

❑ LoginName displays a user’s login name if the user has logged in using ASP.NET membership or
a Windows account name with Windows authentication.

❑ LoginView lets you display different information to anonymous and logged-in users with the
AnonymousTemplate or LoggedInTemplate, which you can customize.

❑ PasswordRecovery lets a user retrieve her password by sending a message to the e-mail address
that she used when creating the account.

User Role and Profile Management
You can integrate ASP.NET Membership Services with ASP.NET role management services for
authorizing authenticated users. The ‘‘Managing Authorization Using Roles’’ online help topic
(http://bit.ly/12DSA6, http://msdn.microsoft.com/en-us/library/9ab2fxh0.aspx) describes how
to take advantage of ASP.NET role management features. The default role provider store is SQL Server.

Similarly, you can integrate ASP.NET Membership Services with user profiles to enable application-
specific customization for individual users. The ‘‘ASP.NET Profile Properties Overview’’ online help
topic (http://bit.ly/FkAby, http://msdn.microsoft.com/en-us/library/2y3fs9xs.aspx) describes
how to integrate the user’s profile.

152

Chapter 6: Authenticating and Authorizing Service Users

The . . .\AspProvider folder includes an ASP.NET Providers Sample: ASP.NET Application Providers
for Windows Azure page (providers-extended-readme.mht) that explains the differences between the
Windows Azure and SQL Server membership providers.

Adapting ASP.NET Authentication and Role
Management to Windows Azure Web Roles

Deploying your Web Role under Windows Azure in data centers enables storing user data in Azure Data
Services or SADB tables. It’s a common practice to create or specify Azure Blob, Table, and Queue Stor-
age Services when creating a new Hosted Service, so Azure Storage Services are the preferable default.
If you take advantage of geolocation services, tables and blobs of multiple Hosted Service instances
can easily access the same role and profile data stored as Storage Services in the same or different data
centers.

Load balancing can cause HTTP requests from a single user to be forwarded to different machines
in one or more data centers. Therefore, the session state provider must keep session data inside
a single, replicated session blob to keep session state consistent for the user during the entire
session.

The Windows Azure SDK includes two membership-related sample projects: AspProviders.sln, which
includes ASPProviders.dll and StorageClient.dll class libraries, and AspProvidersDemo.sln, which adds
the AspProvidersDemo and AspProvidersDemo_WebRole projects to demonstrate adding membership
services to a Web Role.

The \Program Files\Windows Azure SDK\v1.0\Samples.zip file contains 11 sample projects that demon-
strate many advanced Windows Azure Platform features. The following sections assume that you extract
the files to an unprotected location, C:\Azure Samples.

Running the Windows Azure SDK’s AspProvidersDemo
Service Locally

To build and run the AspProvidersDemo.sln project for the first time, execute buildme.cmd and
runme.cmd to open the Default.aspx page, as shown in Figure 6-1.

Clicking the Login link in the headline or the first item in the pages list displays the message shown in
Figure 6-2.

Clicking OK dismisses the message, creates the AspProvidersDemoDB database and opens the Login
page (see Figure 6-3).

If you receive an error at this or a later step, right-click Solution Explorer’s AspProviderDemo node and
choose Create Test Storage Tables to create the local storage database.

Click the Create New User link to open the CreateNewWizard.aspx page and add all required fields for
a new account in the CreateUserWizardStep1 form, as shown in Figure 6-4.

Unlike most authentication systems, user names are case sensitive. Passwords and answers to lost-
password questions are encrypted in the table with a salted hash.

153

Part II: Taking Advantage of Cloud Services in the Enterprise

Figure 6-1: The default page of the AspProvidersDemo service with a list of six
available pages.

Figure 6-2: This message appears when you start using
the form but haven’t created the project’s database for
local storage.

Click Create User to move to the next step, which offers three default built-in roles: Countrymen, Family,
and Friends (see Figure 6-5). Select one of the built-in roles and click Finish to add the new member to
the Members and Roles tables and return to the Default.aspx page.

AspProvidersDemo lets you add, but not delete, a user’s role(s) in the wsAssignUserToRoles step,
which is the only point in the demo where you can assign role(s) to a user.

You can add new roles, but not delete roles, in the ManageRoles.aspx page. For this chapter’s sample
project, add DbAdmin, DbReader, and DbWriter roles, which will correspond to SQL Server’s built-in
db_owner, db_datareader, and db_datawriter database roles (see Figure 6-6).

154

Chapter 6: Authenticating and Authorizing Service Users

Figure 6-3: The Login page of the AspProvidersDemo service for registered and
unregistered users.

Figure 6-4: Adding a new user to the Membership table.

155

Part II: Taking Advantage of Cloud Services in the Enterprise

Figure 6-5: Adding a role for a new user during the signup process.

Figure 6-6: Adding three data-related roles to the three default roles.

156

Chapter 6: Authenticating and Authorizing Service Users

Working with the AspProvidersDemoDB Database
The easiest way to get rid of unwanted roles, such as Countrymen, Family, and Friends, is to open the
AspProvidersDemoDB database in SQL Server Management Studio [Express]. The database contains
three user tables: dbo.Membership, dbo.Roles, and dbo.Sessions, as shown in the database diagram of
Figure 6-7. Each table has a clustered composite index on the PartitionKey and RowKey columns.

Figure 6-7: The database diagram for the Membership, Roles,
and Sessions tables.

Although obvious relationships exist between the UserName values of the Membership and Roles tables
and the BlobName values of the Membership or Sessions tables, by default no referential integrity
constraints are enforced in the database.

To remove the Countrymen, Family, and Friends roles and the initial user you added in the preceding
section, do the following:

1. Right-click Object Explorer’s Roles node and choose Open Table to display a datasheet
containing the six roles. Select the Countrymen, Family, and Friends rows and delete
them.

157

Part II: Taking Advantage of Cloud Services in the Enterprise

2. Right-click Object Explorer’s Members node, choose Open Table, note the UserID
uniqueidentifier, and encrypted Password, PasswordSalt, and PasswordAnswer cells,
and then delete the user you added in the preceding section.

3. Repeat the preceding section’s process for your administrative account but add the DbAd-
min, DbReader, and DbWriter roles in the final step.

Exploring Azure-Specific Membership Elements and
Attributes in the Web.config File

The AspProviderDemo_WebRole project’s Web.config file includes several groups under the
<system.web> section with default attribute values specific to ASP.NET Web Cloud Service
projects.

Membership Section
Listing 6-1 shows the <membership> section with Cloud Service-specific attribute values emphasized:

Listing 6-1: Default elements and attribute values for the web.config file’s
<membership> section

<system.web>
<membership defaultProvider="TableStorageMembershipProvider"

userIsOnlineTimeWindow = "20">
<providers>

<clear/>
<add name="TableStorageMembershipProvider"
type="Microsoft.Samples.ServiceHosting.AspProviders. _

TableStorageMembershipProvider"
description="Membership provider using table storage"
applicationName="AspProvidersDemo"
enablePasswordRetrieval="false"
enablePasswordReset="true"
requiresQuestionAndAnswer="false"
minRequiredPasswordLength="1"
minRequiredNonalphanumericCharacters="0"
requiresUniqueEmail="true"
passwordFormat="Hashed"

/>
</providers>

</membership >
</system.web>

Line-continuation characters indicate attribute values that exceed the number of printable code characters
on a monospace line.

The userIsOnlineTimeWindow value is the number of minutes after the LastActivityDateUtc timestamp
value during which the user is considered to be online.

The default minRequiredPasswordLength value of 1 is clearly inappropriate and should be set to a
value between 6 and 8.

158

Chapter 6: Authenticating and Authorizing Service Users

Role Manager, Profile, and Session State Sections
Role Manager, Profile, and Session storage is theoretically optional, but most projects will require at least
<roleManager> and <sessionState> sections (see Listing 6-2).

Listing 6-2: Default elements and attribute values for the web.config file’s
<roleManager>, <profile>, and <sessionState> sections

<system.web>
<roleManager enabled="true" defaultProvider="TableStorageRoleProvider"

cacheRolesInCookie="true" cookieName=".ASPXROLES" cookieTimeout="30"
cookiePath="/" cookieRequireSSL="false" cookieSlidingExpiration = "true"
cookieProtection="All" >

<providers>
<clear/>
<add name="TableStorageRoleProvider"
type="Microsoft.Samples.ServiceHosting.AspProviders. _

TableStorageRoleProvider"
description="Role provider using table storage"
applicationName="AspProvidersDemo"

/>
</providers>

</roleManager>

<profile enabled="true" defaultProvider="TableStorageProfileProvider"
inherits="UserProfile">

<providers>
<clear/>
<add name="TableStorageProfileProvider"
type="Microsoft.Samples.ServiceHosting.AspProviders. _

TableStorageProfileProvider"
description="Profile provider using structured storage"
applicationName="AspProvidersDemo"

/>
</providers>

<! —
<properties>

<add name="Country" type="string"/>
<add name="Gender" type="string"/>
<add name="Age" type="Int32"/>

</properties>
— >

</profile>

<sessionState mode="Custom" customProvider="TableStorageSessionStateProvider">
<providers>

<clear />
<add name="TableStorageSessionStateProvider"

type="Microsoft.Samples.ServiceHosting.AspProviders. _
TableStorageSessionStateProvider"

applicationName="AspProvidersDemo"
/>

</providers>
</sessionState>

</system.web>

159

Part II: Taking Advantage of Cloud Services in the Enterprise

Optional Data Services and Default Settings in Web.Config
You can add the settings shown in Listing 6-3 to Web.config to specify Data Services endpoints and
account information as well as default table names, provider application name, and blob container names
for profile and session data.

Listing 6-3: Optional Web.config elements to specify Data Services endpoints and
account data plus default names for tables, application, and profile and session
containers

<appSettings>
<add key = "TableStorageEndpoint" value="http://127.0.0.1:10002"/>
<add key = "BlobStorageEndpoint" value="http://127.0.0.1:10000"/>
<add key = "AccountName" value="devstoreaccount1"/>
<add key = "AccountSharedKey" value="Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1 .."/>

<add key = "DefaultMembershipTableName" value="Membership"/>
<add key = "DefaultRoleTableName" value="Roles"/>
<add key = "DefaultSessionTableName" value="Session"/>
<add key = "DefaultProviderApplicationName" value="ProviderTest"/>
<add key = "DefaultProfileContainerName" value="profile"/>
<add key = "DefaultSessionContainerName" value="session"/>

</appSettings>

Corresponding <Setting> elements in the ServiceConfiguration.cscfg file override values specified in the
Web.config file or the default values supplied by code in the AspProviders project’s Configuration class.

Adding <Setting> elements to the ServiceConfiguration.cscfg file is the preferred approach because you
can edit that file in the Azure Services Portal. Editing Web.config requires recompiling and redeploying
the service. <Setting> elements added to the ServiceConfiguration.csfg file require adding corresponding
elements to the ServiceDefinition.csdef file.

Listing 6-4 shows the Configuration class’s code for the lowest priority default values.

Listing 6-4: Code to provide default names for tables, application, and profile and
session containers

internal const string DefaultMembershipTableName = "Membership";
internal const string DefaultRoleTableName = "Roles";
internal const string DefaultSessionTableName = "Sessions";
internal const string DefaultSessionContainerName = "sessionprovidercontainer";
internal const string DefaultProfileContainerName = "profileprovidercontainer";
internal const string DefaultProviderApplicationName = "appname";

If you change one or more table names, you must regenerate the local Data Services database.

Data Services and Default Settings in ServiceConfiguration.cscfg
Listing 6-5 shows the ServiceConfiguration.cscfg file for the modified AspProviderDemo.sln project in
the WROX\Azure\Chapter06\AspProviderDemo folder:

160

Chapter 6: Authenticating and Authorizing Service Users

Listing 6-5: Service configuration settings for local storage endpoints

<?xml version="1.0"?>
<ServiceConfiguration serviceName="AspProvidersDemo"
xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration">

<Role name="WebRole">
<Instances count="2" />
<ConfigurationSettings>

<! — For local storage — >
<Setting name="AccountName" value="devstoreaccount1"/>
<Setting name="AccountSharedKey" value="Eby8vdM02xNOcqFlqUwJP .."/>
<Setting name="BlobStorageEndpoint" value="http://127.0.0.1:10000"/>
<Setting name="QueueStorageEndpoint" value = "http://127.0.0.1:10001"/>
<Setting name="TableStorageEndpoint" value="http://127.0.0.1:10002"/>
<Setting name="allowInsecureRemoteEndpoints" value=""/>

</Role>
</ServiceConfiguration>

The later section,‘‘Moving the AspProvidersDemo’s Data Source to the Cloud,’’ explains use of the
allowInsecureRemoteEndpoints setting, which doesn’t apply to local storage.

Analyzing the AspProviders Library’s Classes
The AspProviders sample class library contains seven Azure-specific class files, which serve
as the starting point for adding ASP.NET membership features to Cloud Web applications.
Three of these classes, TableStorageMembershipProvider, TableStorageRoleProvider, and
TableStorageSessionProvider, include TableNameDataServiceContract classes, which inherit
from the TableStorageDataServiceContract class. Therefore these classes automatically
generate Membership, Role, and Session tables with the structures defined by the derived
class.

The TableStorageMembershipProvider manages user profiles, so a Profile table isn’t required.

The TableStorageMembershipProvider Class
The TableStorageMembershipProvider class stores user data inside a membership table
managed by Azure Table Services. To prevent downtime during web application or data
center software updates, web applications are hosted on a minimum of two web service
instances in one or more data centers. The TableStorageMembershipProvider instances
running on these two (or more) web service instances access the same user data (state) in
the membership table. Figure 6-8 shows part of the content of a typical MembershipRow
item.

David Pallman’s Azure Storage Explorer application (AzureStorageExplorer.sln) is a Windows
Presentation Foundation front-end for displaying table, blob, and queue values in Azure local and
cloud storage. You can download the app’s binary files and source code from http://bit.ly/ErrGT,
www.codeplex.com/azurestorageexplorer.

161

Part II: Taking Advantage of Cloud Services in the Enterprise

Figure 6-8: Azure Storage Explorer displaying part of the author’s Member table
data.

The PartitionKey value, which doesn’t appear in Figure 6-8, is the concatenation of ApplicationName,
the literal letter a and the UserName with an empty string as the RowKey value; this combination
creates a unique partition for each row. This approach ensures the maximum distribution (scal-
ability) of membership data, which could expand to millions of rows for a very popular web
application.

The TableStorageMembershipProvider.cs file’s class diagram, shown in Figure 6-9, contains Table
StorageMembershipProvider, MembershipRow (refer to Figure 6-8), MembershipDataServiceContext,
and EmailComparer classes. The EmailComparer class aids testing for a unique e-mail address for each
new member.

The TableStorageRoleProvider Class
The Roles table holds a combination Role-name rows and UserInRole rows, as shown in Figure 6-10. The
upper Table pane shows three Role-name rows for DbAdmin (1), DbReader (2), and DbWriter (3) role
names and one of three UserInRole rows for an administrative user.

The lower pane of Figure 6-10 displays the attribute names and values of the Role entity selected in the
upper pane as elements of an XML document. Notice that the PartitionKey property value is
the concatenation of ApplicationName and the literal letter a, and the RowKey property value
is the RoleName (DbAdmin) with literal 62 inserted, apparently to accommodate potential duplicate
names. In this case, a single partition stores all Role rows for a particular web application (service).
Listing 6-6 shows the properties of the row for a user (refer to Figure 6-8) who’s a member of the DbAdmin
group.

162

Chapter 6: Authenticating and Authorizing Service Users

Figure 6-9: The TableStorageMembershipProvider’s class diagram.

Listing 6-6: Properties for an AspProvidersDemo user’s DbAdmin role assignment

<entity>
<PartitionKey>AspProvidersDemoarogerj</PartitionKey>
<RowKey>Db62Admin</RowKey>

Continued

163

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 6-6: Properties for an AspProvidersDemo user’s DbAdmin role assignment
(continued)

<Timestamp>3/30/2009 9:47:05 PM</Timestamp>
<ApplicationName>AspProvidersDemo</ApplicationName>
<RoleName>DbAdmin</RoleName>
<UserName>rogerj</UserName>

<entity>

Appending the UserName to the PartitionKey value increases scalability.

Figure 6-10: Four of the six rows for three Role names and one user in the three
roles.

The TableStorageRoleProvider.cs file’s class diagram defines classes — TableStorageRoleProvider,
RoleRow, and RoleDataServiceContext — that correspond to those of the TableStorageMember-
Provider.cs file. Figure 6-11 shows the properties and methods of these three classes.

The TableStorageProfileProvider Class
Blobs in the profileprovidercontainer store profile names in plain text and values as encrypted byte
arrays; each user can have zero or one profile, so no Profiles table is required. The Membership table’s
ProfileBlobName, ProfileIsCreatedByProfileProvider, ProfileLastUpdatedUtc, and ProfileSize
attribute-value pairs store profile management details. Figure 6-12 shows the profile content that gener-
ates the entries of Figure 6-13.

164

Chapter 6: Authenticating and Authorizing Service Users

Forms in the \WROX\Chapter06\AspProvidersDemo\AspProvidersDemo.sln sample project are
reformatted to match the colors of the \WROX\Chapter06\AzureTableTestHarnessSSL\AzureTableTest
Harness.sln project’s form.

Figure 6-11: The TableStorageRoleProvider’s class
diagram.

In Figure 6-13, the 0 argument in the Age:S:0:2 segment represents the start position of the Age value
(21) in the string; 2 represents the length. Similarly, the Gender value (Male) starts at position 2 and is 4
characters long. Finally, the Country value (USA) starts at position 6 and is 3 characters long.

Figure 6-14 combines the TableStorageProfileProvider.cs and TableStorageSessionProvider.cs files’ class
diagrams.

The TableStorageSessionProvider Class
In the case of session state, HTTP requests from a single user are likely to be forwarded to different
machines in the data center if you specify two or more service instances in the ServiceConfig-
uration.cscfg file. The session state provider in this sample stores session data in a blob of the
sessionprovidercontainer container. A Sessions table row stores the blob name and other session
management data, as shown in Figure 6-15. Regardless whether the load balancer routes requests from
the same user address to different machines in the Azure Fabric, session state is retrieved from the
storage services and thus kept consistent across the entire session.

165

Part II: Taking Advantage of Cloud Services in the Enterprise

Figure 6-12: Viewing a user profile’s attribute-value pairs and assigned roles in the
MyProfile.aspx page.

Figure 6-13: Plain text attribute names (Country, Gender, and Age) and encoded values in
a profile blob.

166

Chapter 6: Authenticating and Authorizing Service Users

Storing session state that contains unencrypted personally identifiable information in persistent blobs
probably violates the governmental regulations and industry rules discussed in Chapter 5’s ‘‘Gaining
and Auditing Regulatory Compliance’’ section and related sections.

Figure 6-14: The TableStorageProfileProvider and
TableStorageSessionProvider class diagrams.

Session state converts the session dictionary’s contents to a binary blob by a custom serialization pro-
cess and stores the blob to the sessionprovidercontainer container. Serialization and deserialization
supports .NET primitive types, including String, Boolean, DateTime, TimeSpan, Int16, Int32, Int64, Byte,
Char, Single, Double, Decimal, SByte, UInt16, UInt32, UInt64, Guid, and IntPtr, and writes these types
directly to the blob. BinaryFormatter serializes object types and is slower than that for primitive types.
Figure 6-16 shows the Base64Binary-encoded representation of the opaque byte array from a serialized
session dictionary with only a few string values.

167

Part II: Taking Advantage of Cloud Services in the Enterprise

Figure 6-15: Sessions row attribute-value management pairs for a session blob.

Figure 6-16: Part of the Base64Binary-encoded representation of a session-state blob.

168

Chapter 6: Authenticating and Authorizing Service Users

The ‘‘Fast, Scalable, and Secure Session State Management for Your Web Applications’’ MSDN
Magazine article by Michael Volodarsky (http://bit.ly/DIMCS, http://msdn.microsoft.com/en-us/
magazine/cc163730.aspx) provides more details about ASP.NET session state management, including
an explanation of ASP.NET 2.0 session partitioning.

Moving the AspProvidersDemo’s Data Source
to the Cloud

Listing 6-7 shows the ServiceConfiguration.cscfg file’s settings for secure HTTPS transport of Azure
Tables and Blobs for the AspProvidersDemo service.

It’s a recommended practice to verify connectivity with Azure Data Services before attempting to inte-
grate membership services with an existing Azure service’s WebRole project.

Listing 6-7: Service configuration settings for secure remote storage endpoints

<?xml version="1.0"?>
<ServiceConfiguration serviceName="AspProvidersDemo"
xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration">

<Role name="WebRole">
<Instances count="2" />
<ConfigurationSettings>
<! — For cloud storage — >
<Setting name="AccountName" value="oakleaf3"/>
<Setting name="AccountSharedKey" value="gVIpq7XHK+4t0iivSTP .." />
<Setting name="BlobStorageEndpoint" value="https://blob.core.windows.net" />
<Setting name="QueueStorageEndpoint" value="https://queue.core.windows.net" />
<Setting name="TableStorageEndpoint" value="https://table.core.windows.net" />
<Setting name="allowInsecureRemoteEndpoints" value="false"/>

</ConfigurationSettings>
</Role>

</ServiceConfiguration>

The allowInsecureRemoteEndpoints setting, which is emphasized for cloud storage in Listing
6-7, requires SSL/TLS (secure HTTPS) connections to Storage Services by default (value="" or
value="false").

See Chapter 5’s ‘‘Enabling TLS for Azure Data Services’’ for more information about using TLS with
Azure Tables and Blobs.

If you’re running your service on the Azure Fabric in the same data center as your storage services and
don’t want to incur the TLS overhead, set value="true".

Substitute your AccountName and AccountSharedKey values for those shown for cloud storage in
Listing 6-7.

169

Part II: Taking Advantage of Cloud Services in the Enterprise

Integrating Membership Services with an
Azure Service

Integrating ASP.NET Membership Services with an existing WebRole project would be a major
problem if it weren’t possible to customize your own version of the AspProviderDemo.sln
project and then import its files. However, importing and modifying the files is a somewhat
complex project because of the large number of files that must be copied from the Asp-
ProviderDemo_WebRole to the ExistingProjectName_WebRole folder and integrated into the final
solution.

Copying and Integrating Membership-Related Files
The \WROX\Azure\Chapter06\AzureTableTestHarnessSSL folder contains Chapter 5’s
AzureTableTestHarnessSSL.sln project upgraded with most of the AspProviderDemo_WebRole’s
*.aspx, *.aspx.cs, and *.aspx.designer.cs files and all the AspProvider class library’s files. The strategy
used to integrate the two projects was as follows:

1. Copy the \WROX\Azure\Chapter05\AzureTableTestHarnessSSL folder to \WROX\
Chapter06.

2. Compile and run the destination project to verify operability with remote Azure Data
Services in the new location.

3. Rename the destination project’s Web.config file to Web.config.bak or the like.

4. Copy the \WROX\Azure\Chapter05\AzureTableTestHarnessSSL\StorageClient and . . .

\Common projects to \WROX\Azure\Chapter06\AzureTableTestHarnessSSL. Add the two
projects to the destination solution.

5. Copy the \WROX\Azure\Chapter06\ChangePassword.aspx, CreateNewWiz-
ard.aspx, Login.aspx, ManageRoles.aspx, MyProfile.aspx, and MySession.aspx
with their *.aspx.cs and *.aspx.designer.cs files as well as the Web.config file to the
\WROX\Azure\Chapter06\AzureTableTestHarnessSSL\AzureTableTestHarness_WebRole
folder.

6. Add each copied *.aspx and the Web.config file items to the AzureTableTestHarness_Web-
Role project.

7. Right-click the AzureTableTestHarness_WebRole’s References node, click the Projects tab,
select AspProviders, Common, and StorageClient class libraries, and click OK to add the
three references (see Figure 6-17).

8. Open the copied Web.config file and change all instances of applicationName=
"AspProviderDemo" to applicationName="AzureTableTestHarness".

9. Open the ServiceConfiguration.cscfg file and add the <Setting name="allowInsecure
RemoteEndpoints" value="false"/> element.

10. Open the ServiceDescription.cscfg file and add the <Setting name="allowInsecureRemote
Endpoints" /> element.

11. Right-click the Login.aspx page’s node and choose Set as Start Page.

12. Press F5 and cross your fingers while waiting for the Login form to appear.

170

Chapter 6: Authenticating and Authorizing Service Users

13. Previously entered user names and passwords aren’t applicable to the new AzureTableTest
Harness application, so click Create a New User to open the CreateNewUserWizard, and
create a temporary account with a fictitious user name.

Figure 6-17: Adding references to the AspProviders, Common, and StorageClient
class libraries.

Customizing the AzureTableTestHarness Project’s
Default.aspx Page

Emulate the login/logout behavior of the AspProviderDemo project’s Default.aspx page by adding the
following to the end of the text in the <div> at the top of the page:

(<asp:LoginStatus ID="LoginStatus2" runat="server" />
<asp:LoginName ID="LoginName1" runat="server" />)

Emulating links on the AspProviderDemo project’s Default.aspx page simplifies the integration pro-
cess for initial testing, so add a <div> to the bottom of the page with the LinkButton controls shown in
Listing 6-8.

Listing 6-8: LinkButtons to emulate those on the AspProviderDemo project’s
Default.aspx

<div style="font-family: Calibri, Arial, Helvetica, sans-serif;"
id="divManageAccts">

Manage <asp:LoginName ID="LoginName2" runat="server" /> Account:
<asp:LinkButton ID="lbProfile" runat="server"

PostBackUrl="∼/MyProfile.aspx">View

<asp:LoginName ID="LoginName3" runat="server" /> Profile</asp:LinkButton>

Continued

171

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 6-8: LinkButtons to emulate those on the AspProviderDemo project’s
Default.aspx (continued)

<asp:LinkButton ID="lbSession" runat="server"

PostBackUrl="∼/MySession.aspx">View

<asp:LoginName ID="LoginName4" runat="server" /> Session</asp:LinkButton>

<asp:LinkButton ID="lbChangePassword" runat="server"
PostBackUrl="∼/ChangePassword.aspx">Change

<asp:LoginName ID="LoginName5" runat="server" /> Password</asp:LinkButton>

<asp:LinkButton ID="lbRoles" runat="server" PostBackUrl="∼/ManageRoles.aspx"
Enabled="False">Manage User Roles</asp:LinkButton>

<asp:LinkButton ID="lbNewAccount" runat="server"
PostBackUrl="∼/CreateNewWizard.aspx"

Enabled="False">Create New Account</asp:LinkButton>
</div>

The lbRoles and lbNewAccount LinkButtons are disabled by default; these two controls are enabled
only for members of the DbAdmins role by code in Listing 6-9.

Figure 6-18 shows the page with the preceding modification and controls enabled for a member of the
DbAdmins account.

Listing 6-9: Enabling special controls for members of the DbAdmins and DbWriters
roles

// Enable adding, deleting and recreating Customers for DbAdmins and DbWriters
bool isWriter = false;
if (Page.User.IsInRole("DbAdmin") || Page.User.IsInRole("DbWriter"))
{

frmAdd.Enabled = true;

// Enable adding roles and new accounts for DbAdmins
bool isAdmin = false;
if (Page.User.IsInRole("DbAdmin"))

isAdmin = true;

LinkButton lbRoles = Page.Form.FindControl("lbRoles") as LinkButton;
if (lbRoles != null)

lbRoles.Enabled = isAdmin;
LinkButton lbNewAccount =

Page.Form.FindControl("lbNewAccount") as LinkButton;
if (lbNewAccount != null)

lbNewAccount.Enabled = isAdmin;
isWriter = true;

}
if (!isWriter)
{

172

Chapter 6: Authenticating and Authorizing Service Users

// Disable Customer updates for DbReaders
Button delCusts = Page.Form.FindControl("btnDeleteAll") as Button;
if (delCusts != null)

delCusts.Enabled = false;
Button createCusts = Page.Form.FindControl("btnCreateCustomers") as Button;
if (createCusts != null)

createCusts.Enabled = false;
Button updateCusts = Page.Form.FindControl("btnUpdateCusts") as Button;
if (updateCusts != null)

updateCusts.Enabled = false;
}

Figure 6-18: The sample project’s Default.aspx page with LoginStatus, LoginName, and LinkButton controls
as it appears to a member of the DbAdmins role.

Figure 6-19 shows the Default.aspx page after logging out a member of the DbAdmins role. The same
controls are enabled and disabled for a member of the DbReader role only.

The Production web server in later CTPs might behave differently from the Developer Fabric with respect
to start pages. Login.aspx is specified as the start page in step 11 of the preceding section’s instructions
and the Developer web server issues http://127.0.0.1:81/Login.aspx as the startup URL. However,
the Production Fabric might issue http://ServiceName.CloudApp.net/Default.aspx regardless of the

173

Part II: Taking Advantage of Cloud Services in the Enterprise

start page setting. Removing the Default.aspx page name doesn’t solve the problem. To force Login.aspx
as the start page, add the element shown in Listing 6-10 to Web.config’s <webServer> group:

Listing 6-10: Specifying Login.aspx as the default page in IIS 7.0

<defaultDocument enabled="true">
<files>

<clear />
<add value="Login.aspx" />

</files>
</defaultDocument>

A minor change to the _Default class’s Page_Prerender event handler can prevent displaying the
GridView as the result of explicit calls to ../Default.aspx. See the sample project’s Default.aspx.cs
file for details.

Figure 6-19: The sample project’s Default.aspx page after logging out a member of the DbAdmins role.

Figure 6-20 shows the truncated page without the GridView for a user who hasn’t logged in.

You can run the finished version of the upgraded AzureTableTestHarness service on Windows Azure at
http://oakleaf4.cloudapp.net/Login.aspx.

174

Chapter 6: Authenticating and Authorizing Service Users

Figure 6-20: The Default.aspx page hiding data from unauthenticated users.

Authenticating Users with Windows Live ID
Most Windows users have at least one WLID for logging in to Microsoft and other online services that
require user authentication. As noted at the beginning of this chapter, a May 2009 update to the Azure
Services Developer Portal decoupled Live ID authentication from Hosted Services. Doing this removed
the Live Services and Active Directory Federation section and Application ID field from the Hosted
Service page. This section moved to a new Live Services: Existing APIs project that specifies the Hosted
Service’s domain, points to its URL, and provides Application ID and Secret Key values. The portal adds
this new project and assigns it the same name as the corresponding Hosted Service (see Figure 6-21).

All web applications, not just Azure projects, use Live Services: Existing APIs projects that you create
in the Azure Services Developer Portal to register with the WLID service.

The WLID service assigns the Application ID value and uses it to look up the Return URL for the Hosted
Services project’s page and to generate a unique Personal User IDentifier (PUID) for the user and the
site. The PUID can act as primary key for additional registration data provided by the user. The Secret
Key value encrypts and signs the security token provided by the WLID service and corresponds to a
password for the project.

WLID requires the requesting client’s browser to support cookies.

Downloading and Installing the WLID Web Authentication
SDK 1.2

Microsoft describes the Windows Live ID Web Authentication SDK 1.2 (http://bit.ly/Z9KKG,
www.microsoft.com/downloads/details.aspx?FamilyID=E565FC92-D5F6–4F5F-8713–4DD1C90DE19F&
displaylang=en) as a ‘‘platform-independent interface for implementing Windows Live ID sign-in on
Web sites of all kinds’’ and an ‘‘HTTP-based, platform-neutral interface for implementing Windows Live
ID authentication in your existing site, even if it is hosted by a third-party.’’ It’s available for individual
download in ASP.NET (C# and VB), Java, Perl, PHP, Python, and Ruby.

175

Part II: Taking Advantage of Cloud Services in the Enterprise

Figure 6-21: The Live Services: Existing APIs project added for a Hosted Service by the Azure Services
Developer Portal.

The C# and VB SDKs contain a sample file-system web site named WebAuth. After you download and
run webauth-cs-1.2.msi, webauth-vb-1.2.msi or both, copy the lowest-level WebAuth folder and its con-
tents to your \inetpub\wwwroot folder. Launch Vista’s IIS 7 or Windows 7’s IIS 7.5 Manager, navigate
to and right-click the Web Auth Folder and choose Convert to Application (or click the Convert to Appli-
cation link in the Actions pane) to activate the web site (see Figure 6-22).

The WebAuth site’s Web.config file contains a special set of Application ID (wll_appid) and Secret Key
(wll_secret) values in the <configuration> section that point to http://localhost/webauth/sample/
default.aspx as the ReturnURL value, as shown in Listing 6-11.

Listing 6-11: Web.config settings for WLID’s default Application ID and SecretKey
settings for authenticating web sites.

<appSettings>
<add key="wll_appid" value="00163FFF80003301" />
<add key="wll_secret" value="ApplicationKey123"/>
<add key="wll_securityalgorithm" value="wsignin1.0"/>

</appSettings>

176

Chapter 6: Authenticating and Authorizing Service Users

Test the web site by typing the preceding URL into your browser to display a page similar to that shown
in Figure 6-23.

Figure 6-22: The C# WebAuth web site added to IIS 7.x’s Default Web Site.

A border has been added to the table cell and font-family specifications changed in Figure 6-23.

Click the Sign In link to open the WLID sign-in page, which offers the alternative of creating an Informa-
tion Card for sign-in (see Figure 6-24).

Sign in with your WLID to display the WLID sign-out page, which displays your PUID for the application
(see Figure 6-25).

You import code from the WebAuth.sln project’s WindowsLiveLogin.cs class as well as the Default.aspx
and webauth_handler.aspx pages to the LiveIDSampleCloudService.sln project, which you create later in
the chapter.

The \WROX\Azure\Chapter06\LiveIDSampleCloudService folder contains a working version of the
sample project that runs on the Development Fabric. You must register the project with the Return URL
for the webauth_handler.aspx page (http://localhost:##/webauth-handler.aspx, where ## is the port
number, usually 81) and substitute your values for wll_appid and wll_secret in Web.config.

Installing the Windows Live Tools for Visual Studio
Installing Windows Live Tools for Microsoft Visual Studio 2008+ is optional because WebAuth’s
code in the Default.aspx page imports a WebAuth.htm login control to an IFRAME from

177

Part II: Taking Advantage of Cloud Services in the Enterprise

http://login.live.com/controls/. Windows Live Tools adds a Windows Live group to the
VS Toolbox that includes IDLoginStatus and IDLoginView ASP.NET server controls, as well as
MessengerChat, SilverlightStreamMedia and Contacts controls, and a Virtual Earth group, none of
which are related to WLID. Installation also adds a Windows Live ID Web Role template to VS’s New
Project dialog (see Figure 6-26).

Figure 6-23: The C# WebAuth site’s sign-in status.

To download and install the latest release of the Windows Live Tools for VS 2008+, go to
dev.live.com/tools/ and click the Download link.

IDLoginStatus Control
The IDLoginStatus control (http://bit.ly/Q3Cew, http://msdn.microsoft.com/en-us/library/
cc305086.aspx) substitutes for the imported WebAuth.htm control used by the WebAuth sample project.
The control presents users with a link to log in; clicking the link takes them to the WLID login page where
they log in with their WLID. After the WLID service has authenticated them, they are redirected to the
page you specify as the Return URL value when you register your project in the Azure Services Developer
Portal. The following table lists and describes the IDLoginStatus control’s parameters.

178

Chapter 6: Authenticating and Authorizing Service Users

Figure 6-24: Windows Live ID’s sign-in page called from the WebAuth page.

LoginStatus Parameter Description

ID Required. The unique identifier for the control (default value =
IDLoginStatus1).

ApplicationContext Optional. A string containing state information (not used in the sample
project)

ApplicationID
ConfigKey

Required. A string specifying the name of the <appSettings> key that
contains the value of the Application ID (default value = wll_appid).

ApplicationSecret
ConfigKey

Required. A string specifying the name of the <appSettings> key that
contains the value of the secret key (default value = wll_secret).

Automatically
Convert
Authentication

Optional. Set True to automatically log in a user who has logged in with
a Windows Live ID and who has previously associated that ID with an
ASP.NET profile on the Web page (default value = True).

179

Part II: Taking Advantage of Cloud Services in the Enterprise

The following table lists and describes the LoginStatus control’s properties.

LoginStatus Property Description

Action A string containing one of the following three values, which specifies
the action that the user performed: Login when the user signs into the
site. Logout when the user signs out of Windows Live. Your code
should clear the user’s cookies and display the signed out page.
Clearcookie when the Windows Live ID Sign Out page calls your site
to clear user cookies.

ApplicationUserID A string containing a unique identifier for the user signed into this
application or service.

TimeStamp A 32-bit integer that represents the time in seconds that the user last
authenticated, measured from January 1, 1970 GMT.

LoggedInLiveID A Boolean value that is true if the user has signed into Windows Live;
otherwise false.

Figure 6-25: The C# WebAuth site’s sign-out status.

The IDLoginStatus control requires a ScriptManger control on the page, which the Windows Live
ID Web Role template adds for you. This control supports obtaining wll_appid and wll_secret
values only from the Web.config file; unlike the it doesn’t support obtaining these values from the

180

Chapter 6: Authenticating and Authorizing Service Users

ServiceConfiguration.cscfg file. According to members of the Azure team, ASP.NET 4.0 will permit edit-
ing Web.config files in the Azure Services Development Portal. For more information about this issue, see
http://bit.ly/vIVlh, http://oakleafblog.blogspot.com/2009/06/problems-deploying
-webrole-with-windows.html.

IDLoginStatus also raises server-side and client-side events.

Figure 6-26: The Windows Live ID Web Role template added by Windows Live Tools
for VS.

IDLoginView Control
The IDLoginView control (http://bit.ly/AMkLh, http://msdn.microsoft.com/en-us/library/
cc305081.aspx) is an alternative to enable WLID authentication. It supports associating a Windows
Live ID with an ASP.NET membership profile on a web page and provides six templates for content
applicable to anonymous or logged-on users.

Creating and Testing the Initial LiveIDSampleCloudService
Implementing WLID authentication for an existing web site consists of five basic steps:

1. Create a new Blank Cloud Service with a Windows Live Web Role and Default.aspx page, an
empty WindowsLiveLogin.cs class and empty webauth_handler.aspx page.

181

Part II: Taking Advantage of Cloud Services in the Enterprise

2. Copy code from the WebAuth.sln web site sample to Default.aspx, WindowsLiveLogin.cs
and webauth_handler.aspx, replace Default.aspx’s IFRAME code with a LoginStatus control,
and test with default wll_appid and wll_secret values in the Developer Fabric.

3. Use the Azure Services Developer Portal to register http://localhost:81/webauthhandler
.aspx (or similar) with the WLID service, change the Res.Redirect(LoginPage) instruction
to an existing Azure Hosted Service landing page, such as http://oakleaf.cloudapp.net,
and test the authorization handler page.

4. Copy or move the web page(s) to be secured and related code to the sample project,
changing page names as necessary, and change the Res.Redirect(http://oakleaf
.cloudapp.net) instruction to point to the copied web page, renamed if the original was
Default.aspx. At this point, your web application’s original landing page is secure, so you
can deploy the application as a Production Hosted Service.

The following sections provide detailed, step-by-step directions to secure an existing Azure Hosted
Service (oakleaf_host).

Creating the New Cloud Service and Web Role
Follow these steps to create the sample web application and its empty pages and class file:

1. Download and run webauth-cs-1.2.msi or later file, if you haven’t done so previously, and
then open the WebAuth web site in VS 2008+ to provide code to past to web pages and class
files you add to the sample project.

2. Open a new C# Blank Cloud Service project and name it LiveIDCloudService or the like.

3. Add a new Windows Live Web Role to the project and name it LiveIDWebRole; accept
Default.aspx as the name of its web page.

4. Add a WindowsLiveLogin.cs class to the project to implement the WLID web authentication
protocol in C#.

5. Add a webauth-handler.aspx page to the project to handle the three WLID authentication
actions and display the secured web page.

6. Press F5 to compile and run the project in the Development Fabric and display an empty
page. Make a note of its URL, which usually is http://127.0.0.1:81/Default.aspx.

Copying Code from the WebAuth Sample
The WebAuth sample web site contains most of the code you need to get a sample web application with
WLID authentication up and running in the Developer Fabric. Here’s the drill for copying and modifying
the code from the WebAuth site:

1. Open WebAuth from its file-system location, open webauth_handler.aspx.cs, copy all its
code, and paste it to the sample app’s webauth_handler.aspx.cs code-behind file replacing
the default source code stub.

2. Open WebAuth’s webauth_handler.aspx, copy its Page directive, and overwrite the same
directive in the sample app’s webauth_handler.aspx file. Replace the Page directive’s
CodeFile= with CodeBehind=. Remove the default source code stub.

182

Chapter 6: Authenticating and Authorizing Service Users

3. Open WebAuth’s \WebCode\WindowsLiveLogin.cs class file, copy all its code, and paste it
to the sample app’s WindowsLiveLogin.cs file.

4. Open WebAuth’s Default.aspx.cs file, copy all its code, and paste it to the sample app’s
Default.aspx.cs file replacing the default source code stub.

5. Open WebAuth’s Default.aspx file, copy all its code, including its Page directive, and
replace all source in the sample app’s Default.aspx file. Replace the Page directive’s
CodeFile= with CodeBehind= and Inherits="WindowsLiveWebRole.webauth_handler"
with Inherits="HandlerPage".

6. Open the AJAX Extensions group, and add a ScriptManager control above the opening
<table> tag. IDLoginStatus requires a ScriptManager control on the page.

7. Wrap the SciptManager control and the table in a pair of <form runat="server"> . . .

</form> tags.

8. Right-click the Default.aspx icon and choose Set as Start Page.

9. Press F5 to build and run the sample app.

10. If you receive a ‘‘Value cannot be null. Parameter name: value’’ run-time error, open the
sample app’s Web.config file, and replace the <appSettings /> element with the following
default <appSettings> group for the WebAuth site:

<appSettings>
<add key="wll_appid" value="00163FFF80003301" />
<add key="wll_secret" value="ApplicationKey123" />

</appSettings>

11. Press F5 again to compile and run the sample, and display the login table cell (refer to
Figure 6-23).

Optionally, change the <title> and <h1> elements’ text to reflect the new application’s name and add a
font-size="Small" attribute to the IDLoginStatus control’s definition.

Registering the webauth_handler Page’s ReturnURL in the Development
Fabric

The webauth_handler.aspx page processes handles state for the three different Action values so its URL
must registered as the ReturnURL for the sample application. Debugging webauth_handler.aspx.cs’s
Page_Load event handler requires running the sample app in the Development Fabric. Follow these steps
to temporarily register http://localhost:81/webauth_handler.aspx (or the like) as the return URL,
modify the Web.config file to point to the new WLID registration, add a redirect to an unsecured Azure
Hosted Application, and test the handler’s response, do the following:

1. Log into the Azure Services Developer Portal (http://bit.ly/12kdPb, http://lx.azure.
microsoft.com/Cloud/Provisioning/Default.aspx), click the New Project link, and click
the Live Services: Existing API button to open the Create a Project: Project properties page.

2. Type a short name for the project, such as WLIDSampleApp in the Project Label text box, a
brief description in the Project Description text box, leave the Domain text box empty, and
type the handler page’s Developer Fabric URL in the Return URL text box (see Figure 6-27).

183

Part II: Taking Advantage of Cloud Services in the Enterprise

Figure 6-27: The completed registration template for the WLID sample application.

3. Click Create to register the Return URL and open the page that WLID returns with unique
Application ID and Secret Key values (see Figure 6-28).

4. Open the sample app’s Web.config file and replace the wll_appid and wll_secret values
with the Application ID and Secret Key values from step 3.

5. Open the sample app’s webauth_handler.aspx.cs code-behind file and replace the
res.Redirect(LoginPage); instruction on line 85 with res.Redirect("http://oakleaf
.cloudapp.net"); or substitute the URL for the landing page of an unsecured Hosted
Application you’ve uploaded to the Azure Production Fabric.

6. Press F5 to build and run the sample app, log in with your WLID, and verify that the Hosted
Application appears as expected.

7. Perform a few operations that result in a post-back to verify that the WLID authentication
cookie works as expected.

8. Navigate back to the sign-in page and verify that the Sign Out link substitutes for Sign In.

184

Chapter 6: Authenticating and Authorizing Service Users

Figure 6-28: The registration project for the WLID sample application.

At this point, you’ve verified that WLID authentication is working but you haven’t secured the tar-
get Hosted Project running in the Production fabric. Unauthenticated users can continue to open the
application at http://oakleaf.cloudapp.net with no difficulty.

Securing a Hosted Project in the Azure Production Fabric
The most practical method to require WLID authentication for an existing Hosted Project is to incorporate
its components in the project containing the webauth_handler.aspx page or vice-versa, depending on the
project’s complexity. Following are the generic steps to integrate, test, and promote a combined project
to the Azure Production Fabric:

1. Add the original app’s page, code-behind, class and library files to the sample app, either by
importing them or copying their contents as in the preceding sections.

2. If the original app uses cloud storage, add the required TableStorageEndpoint or
BlobStorageEndpoint and AccountSharedKey elements to the ServiceDefinition.csdef and
ServiceConfiguration.cscfg files.

185

Part II: Taking Advantage of Cloud Services in the Enterprise

3. Test the project in the Development Fabric with cloud storage.

4. Create a new Hosted Service with http://ProjectURL/webauth_handler.aspx as the
Return URL and replace Web.config’s wll_appid and wll_secret values with the new
Application ID and Secret Key values.

5. Change the res.Redirect() URL to the new Return URL.

6. Publish the project to the new Hosted Service, promote it to Production status, and verify
your results are the same as for the preceding section’s test.

Review the code of and run the \WROX\Azure\Chapter06\LiveIDSampleCloudService project
in the Development Fabric to verify the technique for securing the TargetURL page and see the
http://bit.ly/vIVlh, http://oakleafblog.blogspot.com/2009/06/problems-deploying-webrole
-with-windows.html for additional deployment details. This OakLeaf blog post contains a link to a live
demonstration of the LiveIDSampleCloudService running on the Windows Azure Production Fabric.

For simplicity, the LiveIDSampleCloudService.sln project doesn’t include a registration page or code to
associate a user name and other details with the unique ID generated for the user for each application
that’s shown in the sign-out message of Figure 6-25. A real world application would require a registra-
tion page to add rows to a RegisteredUsers table with a RowKey value of the unique ID and a Status
attribute indicating whether the user was logged in or not. As users log in to the application, code would
test for the existence of a row for the user. If present, the user would be flagged as logged in; if not, the
user would be asked to register.

Summary
ASP.NET Membership Services in .NET 2.0 and later eliminate the need for developers to write and
rewrite code to store and validate user credentials for web-based authentication and authorization.
Membership providers default to SQL Server tables for storing user IDs, passwords, role membership,
profiles, and session state. The Windows Azure SDK includes a sample AspProviders.dll class library
and an AspProviderDemo.sln web application that demonstrate techniques for adding authentication
and authorization features to Windows Azure web applications without the need to use the .NET Access
Control Service (ACS).

The AspProviderDemo.sln web application offers a Default.aspx page with links to six membership-
related forms: Login.aspx, ChangePassword.aspx, CreateNewWizard.aspx, ManageRoles.aspx, MyPro-
file.aspx, and MySession.aspx. AspProviderDemo’s forms don’t have a consistent theme, but it’s not
difficult to add Cascading Style Sheet (CSS) styles to enforce conformity with existing pages’ appearance.

After you’ve styled AspProviderDemo to your satisfaction, you can import the AspProvider library and
AspProviderDemo’s forms, as well as Web.config to an existing Azure web application, such as Chapter
5’s AzureTableTestHarnessSSL. Adding references to StorageClient and AspProvider, as well as making
a few tweaks to Web.config and ServiceConfiguration.cscfg/ServiceDefinition.csdef, lets you authorize
members of DbReader, DbWriter, and DbAdmin classes to run increasingly authoritative features of the
original AzureTableTestHarnessSSL page.

Many organizations will prefer single sign-on with WLID authentication. Implementing WLID authen-
tication requires copying code from the WLID Web Authentication SDK 1.2 or later WebAuth sample
web site project and, optionally, the LoginStatus control from the Windows Live Tools for Microsoft
Visual Studio 2008 or later. The chapter ends with step-by-step instructions for writing, deploying, and
testing basic WLID authentication in the Azure Developer and Production Fabrics.

186

Optimizing the Scalability
and Performance of

Azure Tables

SQL Azure Database (SADB) offers most of the relational database management features
of SQL Server 2008 Enterprise, but Azure Tables come to the fore when scalability is the
criterion. The SDS team classified SDS v1 as suitable for most ‘‘departmental’’ database
applications in its ‘‘First round of Questions and Answers’’ blog post of March 12, 2009
(http://bit.ly/cTWjP, http://blogs.msdn.com/ssds/archive/2009/03/12/9471765.aspx),
and SDS architect Nigel Ellis announced at the MIX 09 conference (http://bit.ly/4v0B2y,
http://videos.visitmix.com/MIX09/T06F) that database size will be capped at 5GB to 10GB. SDS
is a premium service; therefore, users can expect a significant surcharge to hourly instance, data
storage, and, potentially, data ingress and egress fees. These limitations and, especially, surcharges
mean that financial executives will require .NET architects and developers designing and writing
Azure application to justify substituting SDS for plain-old Azure tables (POATs).

Earlier chapters discussed how tables based on the Entity-Attribute-Value (EAV) data model, such
as Azure, Amazon SimpleDB, and Google App Engine (GAE) tables, differ from their relational
cousins. This chapter concentrates on helping .NET architects and developers get the most out of
Azure tables’ scalability benefits and maximize their performance in enterprise-scale applications.

Assigning Primary Key Values to Entities
Azure tables’ composite primary key, which consists of concatenated PartitionKey and RowKey
property value strings, provides a unique entity ID, also called an object ID, to identify and sort
entities within an Azure table. PartitionKey values identify table partitions for load balancing
across storage nodes.

Part II: Taking Advantage of Cloud Services in the Enterprise

Brewer’s conjecture, commonly called the CAP theorem, states:

When designing distributed web services, there are three properties that are com-
monly desired: consistency, availability, and partition tolerance. It is impossible to
achieve all three.

Windows Azure stores entities with the same PartitionKey value in a single location, typically a virtual
server node running on the Azure Fabric. Azure stores a master and at least two replica versions of each
node in different failure domains. Entities in a table having the same PartitionKey value are said to be
in a locality, which is the unit of consistency for Azure Tables. A locality has no partition tolerance, so it’s
possible, at least theoretically, to achieve consistency and availability for the entities in the locality.

If a table contains multiple entities with the same PartitionKey value, unique RowKey values are required
to provide a unique entity ID; otherwise, RowKey values can be empty strings or a value indicating the
entity’s type or kind, such as Customer, Order, or OrderDetail. The flexible properties feature of Azure
tables permits storing entities of different types in the same table.

Following is the ranking of query performance with the $filter query operator (a lower number is
faster):

1. Query by PartitionKey and RowKey values.

2. Query by PartitionKey and some other property value.

3. Query by RowKey only or any other property value.

If you don’t include the PartitionKey value, the server-side query engine will scan all partitions for
RowKey or other property value matches.

You must include valid PartitionKey and RowKey values, which include the String.Empty value, for
every insert, update, or delete operation you execute.

Choosing Partition Keys
PartitionKey values can be strings having a Length property value of 0KB to 32KB and cannot contain
any of the following characters:

❑ Forward slash (/)

❑ Backslash (\)

❑ Number sign (#)

❑ Question mark (?)

If you expect that your table could ultimately contain more entities than a single Azure node can reason-
ably be expected to hold, you should plan on assigning the PartitionKey value on an individual parent
entity basis, such as by UserID, CustomerID, CreditCardID, OrderID, or ProductID. Assigning the same
PartitionKey value to parent and child entities ensures that they are maintained in the same locality,
which speeds processing.

The documentation for Azure tables doesn’t include a recommended or absolute maximum partition
size to fit in a single Azure node. For example, if you’re writing a social networking service similar to

188

Chapter 7: Optimizing the Scalability and Performance of Azure Tables

Twitter, which might have had about four million users when this book was written, then user profile
entities with a 2KB image and 1KB of text would total 12GB in size. A site as successful as Facebook,
with about 150 million users in the same time frame, would generate a 750GB table.

Child entities, such as Orders and LineItems for Customers can be identified by natural RowKey values of
OrderID and OrderID + LineItemID, respectively.

Natural key values derive from an entity key value. Alternatives are a GUID or an auto-generated or
programmatically assigned sequential surrogate key value, which is similar to SQL Server’s identity
column property.

Customer entities with CustomerID as the PartitionKey and Orders and LineItems as child entities in
the same table might provide optimum partitioning, especially when later Azure releases provide more
granular geolocation services. Tables containing records for particular countries or regions could be ass-
igned to the closest data center, such as NorthwestUS (Quincy, WA) or SouthwestUS (San Antonio, TX).

This chapter’s sample project is \WROX\Azure\Chapter07\UploadOrderEntitiesWinform.sln. Its Orders
and OrderDetails tables are based on the Northwind Sample database’s Orders and Order Details tables,
which are expected to be found in a .\SQLEXPRESS instance. The Azure Tables have a computed unique
PartitionKey value, which delivers Order entities in descending Order sequence. An (int.MaxValue –
OrderID).ToString().PadLeft(10, ‘0’) expression generates the 10-character fixed-width, left-zero-
padded string required to maintain consistent sorting as OrderID values reach more than nine digits.
RowKey values are set to String.Empty. Figure 7-1 shows the sample project’s form after adding 100
Order and 282 OrderDetail entities to separate OrderTable and DetailTable tables.

Figure 7-1: The Windows-form test harness after uploading data from a client-side
SQL Server instance to OrderTable and DetailTable Azure Tables in the cloud.

The descending sequence allows applying the Take(n) LINQ Standard Query Operator (SQO) to
return the n most recent orders in a query such as (from c in ordContext.OrderTable select
c).Take(10).

189

Part II: Taking Advantage of Cloud Services in the Enterprise

Adding Row Keys
Multiple child entities, such as OrderDetails, can occur for a single parent entity ID value (OrderID), so
they require RowKey values to maintain uniqueness. The relational Order Details table has a composite
primary key, which consists of OrderID + ProductID values. Therefore, natural RowKey values could be
created from a ProductID.ToString().PadLeft(6, ‘0’) expression for ProductID values < 1000000.

An alternative is a surrogate sequential item number converted to a left-padded string by an expression
such as ItemNumber.ToString().PadLeft(2, ‘0’) for services with a maximum of 99 different items.
This chapter’s sample project’s DetailTable uses the alternative expression to compute RowKey values.

Handling Associated Entities
Azure Tables don’t support entity associations (relationships), although ADO.NET Data Services and the
AtomPub wire format support 1:n, 1:1, and n:1 associations with the $expand query option, which returns
links to associated entities inline, and AtomPub <link rel= . . . /> elements. If your child entities have
a property value equal to the parent entity’s PartitionKey value (or PartitionKey plus RowKey value)
you can use the LINQ join SQO in queries against in-memory sequences that implement IEnumerable
or IQueryable to perform the approximate equivalent of the $expand option.

The initial version of the sample project stored parent and child entities in separate tables to simplify
displaying associated DetailTable entities in DataGridView controls. The code in Listings 7-1 and 7-2
from the OrderClasses.cs file define the structure of the OrderTable and DetailTable:

Listing 7-1: Code to define the OrderDataModel class for the OrderTable parent table

#region OrderType class generated by the LINQ In-Memory Object Generator (LIMOG) v2
public class OrderType: TableStorageEntity
{

// Default parameterless constructor
public OrderType()

: base()
{

RowKey = Guid.NewGuid().ToString();
PartitionKey = "OrderDataModel";

}
// Partial parameterized constructor
public OrderType(string partitionKey, string rowKey)

: base(partitionKey, rowKey)
{
}

public int OrderID { get; set; }
public string CustomerID { get; set; }
public int? EmployeeID { get; set; }
public DateTime OrderDate { get; set; }
public DateTime? RequiredDate { get; set; }
public DateTime? ShippedDate { get; set; }
public int? ShipVia { get; set; }
public double? Freight { get; set; }

190

Chapter 7: Optimizing the Scalability and Performance of Azure Tables

public string ShipName { get; set; }
public string ShipAddress { get; set; }
public string ShipCity { get; set; }
public string ShipRegion { get; set; }
public string ShipPostalCode { get; set; }
public string ShipCountry { get; set; }

}
#endregion

Listing 7-2: Code to define the OrderDetailDataModel class for the OrderDetailTable child
table

#region DetailType class generated by the LINQ In-Memory Object Generator
(LIMOG) v2
public class DetailType: TableStorageEntity
{

// Default parameterless constructor
public DetailType()

: base()
{

RowKey = Guid.NewGuid().ToString();
PartitionKey = "OrderDetailDataModel";

}
// Partial parameterized constructor
public DetailType(string partitionKey, string rowKey)

: base(partitionKey, rowKey)
{
}

public int OrderID { get; set; }
public int ProductID { get; set; }
public double UnitPrice { get; set; }
public int Quantity { get; set; }
public double Discount { get; set; }

}
#endregion

Server-side code adds the Timestamp system property value as rows add to the tables.

The sample project was then updated to take advantage of Azure Tables’ flexible properties and store
parent and child entities in the same table. Listing 7-3 is the definition of the combined OrderDetailType,
which is the union of OrderType and DetailType, for the OrderDetailTable.

Listing 7-3: Code to define the OrderDetailType class for the OrderDetailTable child table

#region OrderDetailType class (union of OrderType and DetailType)
public class OrderDetailType: TableStorageEntity
{

// Default parameterless constructor
public OrderDetailType()

: base()

Continued

191

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 7-3: Code to define the OrderDetailType class for the OrderDetailTable child
table (continued)

{
RowKey = Guid.NewGuid().ToString();
PartitionKey = "OrderDetailType";

}
// Partial parameterized constructor
public OrderDetailType(string partitionKey, string rowKey)

: base(partitionKey, rowKey)
{
}

public int OrderID { get; set; } // Shared with Detail

// OrderType with additional nullable value types
public string CustomerID { get; set; }
public int? EmployeeID { get; set; }
public DateTime? OrderDate { get; set; }
public DateTime? RequiredDate { get; set; }
public DateTime? ShippedDate { get; set; }
public int? ShipVia { get; set; }
public double? Freight { get; set; }
public string ShipName { get; set; }
public string ShipAddress { get; set; }
public string ShipCity { get; set; }
public string ShipRegion { get; set; }
public string ShipPostalCode { get; set; }
public string ShipCountry { get; set; }

// DetailType; all properties nullable
public int? ProductID { get; set; }
public double? UnitPrice { get; set; }
public int? Quantity { get; set; }
public double? Discount { get; set; }

// Classes; private setter prevents storing the types
public OrderType orderType { get; private set; }
public DetailType detailType { get; private set; }

}
#endregion

The orderType and detailType setters are private to prevent them from being stored in the table.

Substituting the class name, such as OrderType, for the parent table’s RowKey value, and the class
name followed by a numeric suffix for the child table’s unique RowKey value is common practice. For
example, when the Use Single OrderDetails Table check box is marked, OrderType entities added
to the OrderDetailTable have OrderType as the RowKey value. DetailType entities added to the
OrderDetailTable have DetailType_## as the RowKey value, where ## is the two-digit item sequence
number. Figure 7-2 shows the sample project’s form after adding 100 OrderType and 282 DetailType
entities to the single Order DetailTable.

192

Chapter 7: Optimizing the Scalability and Performance of Azure Tables

Figure 7-2: The Windows-form test harness after uploading data from a client-side
SQL Server instance to an Azure OrderDetailTable in the cloud.

Taking Advantage of Entity Group
Transactions

Early Azure Table versions provided support for ACID (atomic, consistent, isolated, and durable)
transactions for single entity types with a common PartitionKey only. More recent table versions
(the May 2009 CTP’s v 2009–04–14 and later) support Entity-Group Transactions (EGTs). EGTs
support ACID transactions for create, update, and delete operations on batches of parent and
child entities with the same PartitionKey value. Following are the requirements for EGTs from
the Table Service API’s ‘‘Performing Entity Group Transactions’’ topic (http://bit.ly/kfWtD,
http://msdn.microsoft.com/en-us/library/dd894038.aspx):

❑ All entities subject to operations as part of the transaction must have the same PartitionKey
value.

❑ An entity can appear only once in the transaction, and only one operation may be performed
against it.

❑ The transaction can include at most 100 entities, and its total payload may be no more than 4 MB
in size.

❑ The Table Service doesn’t support linking operations in a change set.

The ADO.NET Data Services specification’s ‘‘Batch Requests’’ topic (http://bit.ly/14mlEO,
http://msdn.microsoft.com/en-us/library/cc668802.aspx) defines a batch as a ‘‘container of
create, update, and delete (CUD) operations called changesets, as well as a query operation, which is a
retrieval operation within a batch.’’ A changeset represents ‘‘one or more CUD operations.’’

193

Part II: Taking Advantage of Cloud Services in the Enterprise

A single batch supports multiple Insert Entity, Update Entity, Merge Entity, and Delete Entity operations,
which may occur in any order. Only a single query operation can occur within a batch.

To wrap CUD operations in a transaction with the StorageClient sample library, add a
SaveChangesOptions.Batch argument to your SaveChanges() method call after invoking AddObject(),
UpdateObject(), and DeleteObject() methods on your Context object. You might need to add
the highlighted code in Listing 7-4 to the StorageClient library’s TableStorage.cs file to add the
x-ms-version header when processing the request, if you have an early version of the library:

Listing 7-4: Code to add the minimum table version header to support EGTs

private void DataContextSendingRequest(object sender,
SendingRequestEventArgs e)

{

HttpWebRequest request = e.Request as HttpWebRequest;
request.Headers.Add("x-ms-version", "2009–04–14");
. . .

}

Steve Marx’s ‘‘Sample Code for Batch Transactions in Windows Azure Tables’’ blog post
(http://bit.ly/j2VXy, http://blog.smarx.com/posts/sample-code-for-batch-transactions-
in-windows-azure-tables) offers an EGT example with simple tables.

Uploading Table Data
As you learned in earlier chapters, Azure Data Services use the HTTP POST method to insert entities into
tables. Listing 7-5 is an example of the AtomPub POST request message produced by the Windows Azure
SDK’s sample StorageClient library’s classes in the TableStorage.cs file to add a row from the Northwind
sample database’s Orders table to an OrderType entity in an Azure OrderTable:

Listing 7-5: The HTTP POST request to insert an entity from the Northwind Orders table

POST /OrderTable HTTP/1.1
User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Wed, 08 Apr 2009 22:49:49 GMT
Authorization: SharedKeyLite oakleaf3:f3o42—— -RedactedKey—— -6qT6r9AiYnkRS80=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx
Content-Type: application/atom+xml
Host: oakleaf3.table.core.windows.net
Content-Length: 1383
Expect: 100-continue

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns="http://www.w3.org/2005/Atom">

<title />

194

Chapter 7: Optimizing the Scalability and Performance of Azure Tables

<updated>2009–04–08T22:49:49.8086948Z</updated>
<author>
<name />

</author>
<id />
<content type="application/xml">
<m:properties>

<d:CustomerID>BSBEV</d:CustomerID>
<d:EmployeeID m:type="Edm.Int32">4</d:EmployeeID>
<d:Freight m:type="Edm.Double">2.17</d:Freight>
<d:OrderDate m:type="Edm.DateTime">1998–03–11T00:00:00</d:OrderDate>
<d:OrderID m:type="Edm.Int32">10943</d:OrderID>
<d:PartitionKey>2147472704</d:PartitionKey>
<d:RequiredDate m:type="Edm.DateTime">1998–04–08T00:00:00</d:RequiredDate>
<d:RowKey m:null="false" />
<d:ShipAddress>Fauntleroy Circus</d:ShipAddress>
<d:ShipCity>London</d:ShipCity>
<d:ShipCountry>UK</d:ShipCountry>
<d:ShipName>B’s Beverages</d:ShipName>
<d:ShipPostalCode>EC2 5NT</d:ShipPostalCode>
<d:ShipRegion m:null="true" />
<d:ShipVia m:type="Edm.Int32">2</d:ShipVia>
<d:ShippedDate m:type="Edm.DateTime">1998–03–19T00:00:00</d:ShippedDate>
<d:Timestamp m:type="Edm.DateTime">0001–01–01T00:00:00</d:Timestamp>

</m:properties>
</content>

</entry>

The SharedKeyLite’s Base64Binary-encoded signature shown partially redacted in the preceding
example isn’t the AccountSharedKey value from the Service Configuration.cscfg or App.config file. The
SharedKeyLite signature consists of several concatenated headers encoded with the HMAC-SHA256
algorithm.

Azure Tables support a simplified version of the ADO.NET Data Services (formerly the ‘‘Astoria Project’’)
client API for create, retrieve, update, and delete (CRUD) operations by means of the ClientServices
library. The create operation with the POST method returns a confirmation of the data inserted, such as
that shown in Listing 7-6:

Listing 7-6: The HTTP POST response after uploading an entity from the Northwind
Orders table

HTTP/1.1 201 Created
Cache-Control: no-cache
Content-Type: application/atom+xml;charset=utf-8
ETag: W/"datetime’2009–04–08T22%3A48%3A37.9913381Z’"
Location:
http://oakleaf3.table.core.windows.net/OrderTable(PartitionKey=’2147472704’
,RowKey=’’)
Server: Table Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 05b91086–1747–42d6–98ed-1ad6c85537bd
Date: Wed, 08 Apr 2009 22:48:37 GMT
Content-Length: 1774

Continued

195

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 7-6: The HTTP POST response after uploading an entity from the Northwind
Orders table (continued)

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xml:base="http://oakleaf3.table.core.windows.net/"
xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
m:etag="W/"datetime’2009–04–08T22%3A48%3A37.9913381Z’""
xmlns="http://www.w3.org/2005/Atom">

<id>http://oakleaf3.table.core.windows.net/OrderTable(PartitionKey=’2147472
704’,RowKey=’’)</id>

<title type="text"></title>
<updated>2009–04–08T22:48:38Z</updated>
<author>
<name />

</author>
<link rel="edit" title="OrderTable"

href="OrderTable(PartitionKey=’2147472704’,RowKey=’’)" />
<category term="oakleaf3.OrderTable"

scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
<content type="application/xml">
<m:properties>

<d:PartitionKey>2147472704</d:PartitionKey>
<d:RowKey></d:RowKey>
<d:Timestamp m:type="Edm.DateTime">2009–04–08T22:48:37.9913381Z</d:Timestamp>
<d:CustomerID>BSBEV</d:CustomerID>
<d:EmployeeID m:type="Edm.Int32">4</d:EmployeeID>
<d:Freight m:type="Edm.Double">2.17</d:Freight>
<d:OrderDate m:type="Edm.DateTime">1998–03–11T00:00:00</d:OrderDate>
<d:OrderID m:type="Edm.Int32">10943</d:OrderID>
<d:RequiredDate m:type="Edm.DateTime">1998–04–08T00:00:00</d:RequiredDate>
<d:ShipAddress>Fauntleroy Circus</d:ShipAddress>
<d:ShipCity>London</d:ShipCity>
<d:ShipCountry>UK</d:ShipCountry>
<d:ShipName>B’s Beverages</d:ShipName>
<d:ShipPostalCode>EC2 5NT</d:ShipPostalCode>
<d:ShipVia m:type="Edm.Int32">2</d:ShipVia>
<d:ShippedDate m:type="Edm.DateTime">1998–03–19T00:00:00</d:ShippedDate>

</m:properties>
</content>

</entry>

It’s clear from the POST request and response messages that the vast majority of the bytes on the wire
are the data overhead inherent in RESTful data operations with the AtomPub wire format. The payload
for the HTTP 201 response message is about 1.3 times the size of the request message’s payload. The
combined size of the two payloads is 3,157 plus 973 header bytes for a relational table record with a UTF-8
size of about 159 bytes. The insert messages are (4130 – 159) * 100/4130 = 96.2% overhead, assuming that
the return payload is discarded. In other words, the request and response messages are about 26 times
the size of uncompressed relational data. The added overhead contributes significantly to increased data
ingress charges, so it’s important that you measure the expected message sizes before finalizing a budget
for moving your relational data to Azure Tables.

196

Chapter 7: Optimizing the Scalability and Performance of Azure Tables

Comparing Code for Uploading Data to Individual or
Heterogeneous Tables

Listing 7-7 is the btnLoadOrders_Click event handler that updates individual or combined parent and
child entities, depending on the state of the Use Single OrderDetails Table check box (chkSingleTable).
Only minor changes are required to accommodate both OrderType and DetailType entities in an
OrderDetailTable; these changes are emphasized in the following listing.

Listing 7-7: Code to selectively upload OrderType and DetailType or OrderDetailType

entities to Azure Table(s)

private void btnLoadOrders_Click(object sender, EventArgs e)
{

Stopwatch timer = new Stopwatch();
timer.Start();
try
{

// Set cursor, clear text boxes and enable Stop button
this.Cursor = Cursors.WaitCursor;
txtCurOrderID.Text = "";
txtDelOrderID.Text = "";
txtCurOrderID.Text = "";
txtTime.Text = "";
btnStop.Enabled = true;
Application.DoEvents();

// Order and Detail contexts
ordContext = new OrderDataServiceContext(account);
ordContext.RetryPolicy = RetryPolicies.RetryN(3, TimeSpan.FromSeconds(1));
ordContext.SendingRequest

+= new
EventHandler<SendingRequestEventArgs>(OrderSendingRequestHandler);

SqlCommand dtlCmd = null;
if (chkIncludeDetails.Checked)
{

// Set up required objects
dtlContext = new DetailDataServiceContext(account);
dtlContext.RetryPolicy = RetryPolicies.RetryN(3,

TimeSpan.FromSeconds(1));
dtlContext.SendingRequest

+= new
EventHandler<SendingRequestEventArgs>(DetailSendingRequestHandler);

// Details command
dtlConn = new SqlConnection(@"Data Source=.\SQLEXPRESS; Integrated

Security=True; Initial Catalog=Northwind");
dtlConn.Open();
dtlCmd = new SqlCommand(" ", dtlConn);

}

Continued

197

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 7-7: Code to selectively upload OrderType and DetailType or OrderDetailType

entities to Azure Table(s) (continued)

// Open Orders connection and specify query
ordConn.Open();
string query = "SELECT * FROM Orders WHERE OrderID BETWEEN " +

txtMinOrderID.Text
+ " AND " + txtMaxOrderID.Text + " ORDER BY OrderID ";

if (chkDescOrderID.Checked)
query += "DESC";

// Set up Order SqlCommand and SqlDataReader
SqlCommand ordCmd = new SqlCommand(query, ordConn);
SqlDataReader ordRdr = ordCmd.ExecuteReader();
while (ordRdr.Read())
{

OrderType newOrder = new OrderType();

// Create and add PartitionKey, empty or kind (OrderType) RowKey
int partitionKey = int.MaxValue — (int)ordRdr[0];
int length = int.MaxValue.ToString().Length; // Length is 10
newOrder.PartitionKey = partitionKey.ToString().PadLeft(10, ‘0’);
if (chkSingleTable.Checked)
newOrder.RowKey = "OrderType"; //type or kind

else
newOrder.RowKey = String.Empty;

// Process Order properties
newOrder.OrderID = (int)ordRdr[0];
newOrder.CustomerID = (string)ordRdr[1];
newOrder.EmployeeID = (int)ordRdr[2];
newOrder.OrderDate = (DateTime)ordRdr[3];
newOrder.RequiredDate = (DateTime?)ordRdr[4];
if (ordRdr[5] != DBNull.Value)

newOrder.ShippedDate = (DateTime?)ordRdr[5];
if (ordRdr[6] != DBNull.Value)

newOrder.ShipVia = (int)ordRdr[6];
if (ordRdr[7] != DBNull.Value)
{

// Direct cast throws exception
string freight = ordRdr[7].ToString();
newOrder.Freight = double.Parse(freight);

}
newOrder.ShipName = (string)ordRdr[8];
newOrder.ShipAddress = (string)ordRdr[9];
newOrder.ShipCity = (string)ordRdr[10];
// Ireland (no postal codes except Dublin)
if (ordRdr[11] != DBNull.Value)

newOrder.ShipRegion = (string)ordRdr[11];
// Most of Europe
if (ordRdr[12] != DBNull.Value)

newOrder.ShipPostalCode = (string)ordRdr[12];
newOrder.ShipCountry = (string)ordRdr[13];

198

Chapter 7: Optimizing the Scalability and Performance of Azure Tables

// Add and save the Order entity with retries
if (chkSingleTable.Checked)

ordContext.AddObject(OrderDetailDataServiceContext.
OrderDetailTableName, newOrder);

else
ordContext.AddObject(OrderDataServiceContext.

OrderTableName, newOrder);

// Test HTTP Response
DataServiceResponse ordResponse =

ordContext.SaveChangesWithRetries(SaveChangesOptions.None);
List<OperationResponse> ordRespList = ordResponse.ToList();
if (ordRespList.Count() > 0)

foreach (OperationResponse opResp in ordRespList)
{

if (opResp.StatusCode != 201)
{

// Log an error
}

}

if (chkIncludeDetails.Checked)
{

// Add Details for Order
string dtlQuery = "SELECT * FROM [Order Details] WHERE

OrderID = " +
newOrder.OrderID.ToString();
dtlCmd.CommandText = dtlQuery;
SqlDataReader dtlRdr = dtlCmd.ExecuteReader();
int detailNumber = 1;
while (dtlRdr.Read())
{

// Use Order’s partition key and item number as row key
DetailType newDetail = new DetailType();
newDetail.PartitionKey = newOrder.PartitionKey;
if (chkSingleTable.Checked)

newDetail.RowKey = "DetailType_" +
detailNumber.ToString().PadLeft(2, ‘0’);

else
newDetail.RowKey = detailNumber.ToString().PadLeft(2, ‘0’);

newDetail.OrderID = newOrder.OrderID;
newDetail.ProductID = (int)dtlRdr[1];

// Direct casts throw exception; use string intermediary
string price = dtlRdr[2].ToString();
newDetail.UnitPrice = double.Parse(price);
string quan = dtlRdr[3].ToString();
newDetail.Quantity = int.Parse(quan);
string disc = dtlRdr[4].ToString();
newDetail.Discount = double.Parse(disc);

// Add and save the Detail entity
if (chkSingleTable.Checked)

Continued

199

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 7-7: Code to selectively upload OrderType and DetailType or OrderDetailType

entities to Azure Table(s) (continued)

dtlContext.AddObject(OrderDetailDataServiceContext.
OrderDetailTableName, newDetail);

else
dtlContext.AddObject(DetailDataServiceContext.

DetailTableName, newDetail);

DataServiceResponse dtlResponse =
dtlContext.SaveChangesWithRetries(SaveChangesOptions.None);

// Test HTTP Response
List<OperationResponse> dtlRespList = dtlResponse.ToList();
if (dtlRespList.Count() > 0)

foreach (OperationResponse opResp in dtlRespList)
{

if (opResp.StatusCode != 201)
{

// Log an error
}

}
detailNumber += 1;

}
dtlRdr.Close();

}
txtCurOrderID.Text = newOrder.OrderID.ToString();
if (isStop)
{

isStop = false;
break;

}
Application.DoEvents();

}
timer.Stop();
FillDataGridView(10);

}
catch (Exception exc)
{

MessageBox.Show(exc.Message + "\r\n\r\n" + exc.InnerException,
"Exception Adding Order to Azure Table");

}
finally
{

if (ordConn.State == ConnectionState.Open)
ordConn.Close();

if (dtlConn != null && dtlConn.State == ConnectionState.Open)
dtlConn.Close();

this.Cursor = Cursors.Default;
isStop = false;

}
txtTime.Text = (timer.ElapsedMilliseconds / 1000D).ToString("0.000");
btnLoadOrders.Enabled = false;
btnDeleteAllOrders.Enabled = true;

}

200

Chapter 7: Optimizing the Scalability and Performance of Azure Tables

Code in the event-handler for the Use Single OrderDetails Table check box’s CheckChanged event marks
the Include OrderDetails check box when a single table is selected.

Comparing Performance of Homogeneous and
Heterogeneous Table Operations

The following table compares the time in seconds to upload and delete 100 OrderType entities with and
without 232 DetailType entities in two homogeneous or one heterogeneous (OrderDetailTable) using
plain-text HTTP or secure HTTP with Transport Layer Security (TLS).

Number of
Tables, Protocol

Upload
Orders Only

Delete
Orders Only

Upload Orders
with Details

Delete Orders
with Details

Two tables, HTTP 18.86 13.55 67.75 70.92

Two tables, HTTPS
(TLS)

20.80 13.57 69.18 74.40

One table, HTTP 19.15 13.64 69.17 48.75

One table, HTTPS
(TLS)

21.44 13.91 70.57 49.53

Differences in upload times for OrderType entities in one or two-table scenarios are insignificant. How-
ever, deleting DetailType entities is much faster with a single table because the lookup operation that
instantiates the child entities for deletion isn’t necessary.

It’s safe to infer that updating DetailType entities would share a similar performance gain because the
update operation requires the same lookup process as the deletion.

Listing 7-8 is the btnDeleteAll_Click event handler code with the lookup operation’s lines highlighted.

Listing 7-8: Code to selectively delete OrderTable and DetailTable or OrderDetailTable

entities

private void btnDeleteAllOrders_Click(object sender, EventArgs e)
{

// Delete all orders (with Details, if specified)
// It’s faster to delete and recreate the tables

this.Cursor = Cursors.WaitCursor;
btnStop.Enabled = true;
Stopwatch timer = new Stopwatch();
timer.Start();
isDeleting = true;

if (chkSingleTable.Checked)
{

// OrderDetail contexts with retry policies
ordDtlContext = new OrderDetailDataServiceContext(account);

Continued

201

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 7-8: Code to selectively delete OrderTable and DetailTable or OrderDetailTable

entities (continued)

ordDtlContext.RetryPolicy = RetryPolicies.RetryN(3,
TimeSpan.FromSeconds(1));

ordDtlContext.SendingRequest +=
new EventHandler<SendingRequestEventArgs>(OrderSendingRequestHandler);

var ordDtls = from c in ordDtlContext.OrderDetailTable
select c;

TableStorageDataServiceQuery<OrderDetailType> query =
new TableStorageDataServiceQuery<OrderDetailType>
(ordDtls as DataServiceQuery<OrderDetailType>);

IEnumerable<OrderDetailType> queryResults = query.ExecuteAllWithRetries();

try
{

foreach (OrderDetailType orderDetail in ordDtls)
{

// Delete the Order
Application.DoEvents();
txtDelOrderID.Text = orderDetail.OrderID.ToString();
ordDtlContext.DeleteObject(orderDetail);

// Save changes for each Detail
DataServiceResponse ordResponse =

ordDtlContext.SaveChangesWithRetries(SaveChangesOptions.None);
}
// Confirm all Orders are gone
FillDataGridView(10);

}
catch (Exception exc)
{

this.Cursor = Cursors.Default;
MessageBox.Show(exc.Message + "\r\n\r\n" + exc.InnerException,

"Exception Deleting OrderDetail record from Azure Table");
}
finally
{

btnLoadOrders.Enabled = true;
txtTime.Text = (timer.ElapsedMilliseconds / 1000D).ToString("0.000");
this.Cursor = Cursors.Default;
isStop = false;
isDeleting = false;

}
}
else
{

// Order and Order_Detail contexts with retry policies
ordContext = new OrderDataServiceContext(account);
ordContext.RetryPolicy = RetryPolicies.RetryN(3, TimeSpan.FromSeconds(1));
ordContext.SendingRequest +=

new EventHandler<SendingRequestEventArgs>(OrderSendingRequestHandler);

if (chkIncludeDetails.Checked)
{

202

Chapter 7: Optimizing the Scalability and Performance of Azure Tables

dtlContext = new DetailDataServiceContext(account);
dtlContext.RetryPolicy = RetryPolicies.RetryN(3,

TimeSpan.FromSeconds(1));
dtlContext.SendingRequest +=

new
EventHandler<SendingRequestEventArgs>(DetailSendingRequestHandler);

}
var orders = from c in ordContext.OrderTable

select c;
TableStorageDataServiceQuery<OrderType> query =

new TableStorageDataServiceQuery<OrderType>
(orders as DataServiceQuery<OrderType>);

IEnumerable<OrderType> queryResults = query.ExecuteAllWithRetries();
try
{

foreach (var order in orders)
{

bool usePartitionKey = true;
if (chkIncludeDetails.Checked)
{

// Delete the Order’s Order Details entities first
if (usePartitionKey)
{

// Partition key property is indexed, so should be faster

var details = from c in dtlContext.DetailTable
where c.PartitionKey == order.PartitionKey
select c;

foreach (var detail in details)
dtlContext.DeleteObject(detail);

}
else
{

// OrderID property isn’t indexed
var details = from c in dtlContext.DetailTable

where c.OrderID == order.OrderID
select c;

foreach (var detail in details)
dtlContext.DeleteObject(detail);

}

// Test response code and headers for error tracking
DataServiceResponse dtlResponse =

dtlContext.SaveChangesWithRetries(SaveChangesOptions.None);
List<OperationResponse> dtlRespList = dtlResponse.ToList();
if (dtlRespList.Count() > 0)

foreach (OperationResponse opResp in dtlRespList)
{

if (opResp.StatusCode != 204)
{

IDictionary<string, string> opRespStr =
opResp.Headers;

// Log an error
}

}

Continued

203

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 7-8: Code to selectively delete OrderTable and DetailTable or OrderDetailTable

entities (continued)

}
// Delete the Order
txtDelOrderID.Text = order.OrderID.ToString();
ordContext.DeleteObject(order);

// Save changes for each Detail
DataServiceResponse ordResponse =

ordContext.SaveChangesWithRetries(SaveChangesOptions.None);

// Test HTTP Response
List<OperationResponse> ordRespList = ordResponse.ToList();
if (ordRespList.Count() > 0)
{

foreach (OperationResponse opResp in ordRespList)
{

if (opResp.StatusCode != 204)
{

IDictionary<string, string> opRespStr = opResp.Headers;
// Log an error

}
}

}
Application.DoEvents();
if (isStop)
{

isStop = false;
break;

}
}
// Confirm all Orders are gone
FillDataGridView(10);

}
catch (Exception exc)
{

this.Cursor = Cursors.Default;
MessageBox.Show(exc.Message + "\r\n\r\n" + exc.InnerException,

"Exception Deleting Order or Order Detail from Azure Table");
}
finally
{

btnLoadOrders.Enabled = true;
txtTime.Text = (timer.ElapsedMilliseconds / 1000D).ToString("0.000");
this.Cursor = Cursors.Default;
isStop = false;
isDeleting = false;

}
}

}

Differences in DetailType lookup time as the result of substituting an indexed RowKey value for a
scanned OrderID value aren’t significant for the maximum number of entities (2,155) available from the
Order Details table.

204

Chapter 7: Optimizing the Scalability and Performance of Azure Tables

Displaying Data from Heterogeneous Tables
in Grids

The ascending index on PartitionKey and RowKey causes parent and child entities in the
OrderDetailTable to appear with child DetailType entities followed by their parent OrderType
entity, as shown in Figure 7-3.

Figure 7-3: David Pallman’s Azure Storage Explorer displaying a DetailType entity.

Displaying Parent Entities
As is the case for data uploads, downloading data from heterogeneous tables requires only a minor
change to the LINQ to REST query to filter out unwanted entities. Listing 7-9 is the code to fill the
Orders DataGridView control with the most recent OrderType entities from the OrderDetailTable or
OrderTable. The OrderType filter operator for the query is shaded.

Listing 7-9: Filling a DataGridView control with a specified number of the most recent
parent entities

private void FillDataGridView(int numberOfOrders)
{

Continued

205

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 7-9: Filling a DataGridView control with a specified number of the most recent
parent entities (continued)

try
{

// Fill the Order DataGridView
this.Cursor = Cursors.WaitCursor;
Stopwatch timer = new Stopwatch();
timer.Start();
if (chkSingleTable.Checked)
{

dgvOrders.Columns[1].Width = 75;
dgvDetails.Columns[1].Width = 100;
dgvDetails.Columns[2].Width = 90;
var orders = (from c in ordDtlContext.OrderDetailTable

where c.RowKey == "OrderType"

select c).Take(numberOfOrders);
TableStorageDataServiceQuery<OrderDetailType> query =

new TableStorageDataServiceQuery<OrderDetailType>
(orders as DataServiceQuery<OrderDetailType>);

IEnumerable<OrderDetailType> queryResults = query.ExecuteWithRetries();
OrderBindingSource.DataSource = queryResults;

}
else
{

dgvOrders.Columns[1].Width = 60;
dgvDetails.Columns[1].Width = 60;
dgvDetails.Columns[2].Width = 120;
var orders = (from c in ordContext.OrderTable

select c).Take(numberOfOrders);
TableStorageDataServiceQuery<OrderType> query =

new TableStorageDataServiceQuery<OrderType>
(orders as DataServiceQuery<OrderType>);

IEnumerable<OrderType> queryResults = query.ExecuteWithRetries();
OrderBindingSource.DataSource = queryResults;

}
isLoaded = true;
OrderBindingSource_CurrentChanged(null, null);
txtTime.Text = (timer.ElapsedMilliseconds / 1000D).ToString("0.000");
Application.DoEvents();
this.Cursor = Cursors.Default;

}
catch (Exception exc)
{

this.Cursor = Cursors.Default;
MessageBox.Show(exc.Message + "\r\n\r\n" + exc.InnerException,

"Exception filling Order DataGridView");
}

}

Displaying 100 OrderType entities from the OrderTable is slightly faster (3.22 versus 3.47 seconds) than
from the OrderTable table because the homogeneous table scan covers only 30 percent of the entities of
the heterogeneous table.

206

Chapter 7: Optimizing the Scalability and Performance of Azure Tables

Displaying Child Entities
The lower DataGridView control displays part of the DetailType entities for the DetailType entity that
the user selects in the upper Order DataGridView by executing the code of Listing 7-10. In this case, the
filter is the inverse of that for OrderType entities.

Listing 7-10: Filling a DataGridView control with the child entities of a selected parent
entity

private void OrderBindingSource_CurrentChanged(object sender, EventArgs e)
{

if (isLoaded)
{

// Load the Details DataGridView with Details entities for selected
Order entity

this.Cursor = Cursors.WaitCursor;
Stopwatch timer = new Stopwatch();
// Application.DoEvents();

if (chkSingleTable.Checked)
{

OrderDetailType currentRow = OrderBindingSource.Current as
OrderDetailType;

if (currentRow != null)
{

var details = (from d in ordDtlContext.OrderDetailTable
where d.PartitionKey == currentRow.PartitionKey

&& d.RowKey != "OrderType"

select d);
TableStorageDataServiceQuery<OrderDetailType> query =

new TableStorageDataServiceQuery<OrderDetailType>
(details as DataServiceQuery<OrderDetailType>);

IEnumerable<OrderDetailType> queryResults =
query.ExecuteWithRetries();

DetailBindingSource.DataSource = queryResults;
}

}
else
{

OrderType currentRow = OrderBindingSource.Current as OrderType;
if (currentRow != null)
{

var details = (from d in dtlContext.DetailTable
where d.PartitionKey == currentRow.PartitionKey
select d);

TableStorageDataServiceQuery<DetailType> query =
new TableStorageDataServiceQuery<DetailType>
(details as DataServiceQuery<DetailType>);

IEnumerable<DetailType> queryResults = query.ExecuteWithRetries();
DetailBindingSource.DataSource = queryResults;

}
}

Continued

207

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 7-10: Filling a DataGridView control with the child entities of a selected
parent entity (continued)

dgvDetails.DataSource = DetailBindingSource;
if (txtTime.Text.Length > 0)
{

// Add current to existing elapsed time
double ordersTime = double.Parse(txtTime.Text);
txtTime.Text = ((timer.ElapsedMilliseconds / 1000D) +

ordersTime).ToString("0.000");
}
else

// Report current elapsed time
txtTime.Text = (timer.ElapsedMilliseconds / 1000D).ToString();

this.Cursor = Cursors.Default;
}

Summary
One of the primary incentives for moving data from on-premises relational databases to Azure Tables
in the cloud is to maximize scalability under fluctuating demand and deliver peak performance from
WebRole and WorkerRole projects. Maximizing scalability requires paying close attention to the current
and potential storage size of table partitions, which should not exceed the storage capacity of a single
Azure computing node. You implement a partition strategy for load balancing by choosing a set of
PartitionKey values to result in table partition (locality) sizes that are comfortable for the Azure Fabric’s
clusters. Flexible properties permit Azure Tables to store multiple entity types with varying properties.
Storing a single parent and multiple descendent (child) entries in a partition is an effective approach to
controlling ultimate partition storage size. It’s up to the Azure Fabric to provide applications fast access
to multiple related partitions in individual tables.

Unique RowKey values within a single partition provide the equivalent of a composite primary key for
entity identifiers and order entities within the partition. Many applications will require or prefer entities
sorted in descending order, which requires calculating the PartitionKey and, potentially, RowKey values
from NumericType.MaxValue – NumericPropertyValue calculations. This technique sorts OrderType
entities in descending OrderID sequence to permit applying LINQ’s Take(n) Standard Query Operator
to return the last n OrderType entities.

Substituting a table containing parent and child entities for separate parent and child tables demon-
strates substantial improvement in the performance of deletion and, by inference, update operations on
child entities. The chapter’s sample project reduces the time required to delete parent and child entities
uploaded from the Northwind database’s Orders and Order Details tables by about one-third. The sam-
ple project also demonstrates how to write queries to separate the parent and child entities for display in
individual databound grid controls.

208

Messaging with
Azure Queues

Azure Queues provide reliable, asynchronous message delivery between components of a
cloud-based service. Dispatching computing operations of WorkerRole projects to improve
service scalability is the most common use for Azure Queues, which also can assist the Azure
Fabric’s load-balancing features by engaging extra nodes in computing-intensive tasks. Offloading
computation to a WorkerRole can speed the response of cloud-based WebRole pages to user
requests. This chapter will show you how to combine a WebRole, WorkerRole and Queue to create
what’s called an Azure-hosted composite application.

Queues are the simplest of the three Azure data models. A single http://servicename.queue.core
.windows.net service account supports an unlimited number of uniquely named queues. Also, a
queue can contain an unlimited number of messages, each of which can hold up to 8MB of string
or binary payload. Your application can assign an additional 8MB maximum of custom metadata to
a queue in the form of name/value pairs. Individual messages don’t support custom metadata
but have a maximum lifespan (time-to-live or TTL) of seven days. Like Azure Tables and Blobs,
Queues offer a RESTful application programming interface (API) for enabling multiple platforms
and programming languages to manipulate them when running on the Development and Azure
Fabrics. Queues support both HTTP and HTTPS (secure HTTP with Transport Layer Security, TLS)
protocols.

Figure 8-1 illustrates a simple workflow with a single queue for offloading computing services to a
pair of WorkerRoles from a cloud web application (WebRole) that processes web requests and an
on-premises Windows client. The WebRole and client apps enqueue work request messages that
either of the two WorkerRoles starts processing. As the two WorkerRoles complete their work, they
add a new blob to the appropriate container or an entity to a table. The WebRole and client then
process and display the new blob or entity.

Part II: Taking Advantage of Cloud Services in the Enterprise

Message 4

Queue

Cloud
WebRole

WorkerRole 1 WorkerRole 2

On-Premises
Client

Blob Container
or Table 2

Blob Container
or Table 1

Message 3

Message 2

Message 1

HTTP HTTPS

HTTP HTTPS

Figure 8-1: Diagram of an Azure Queue for
dispatching similar compute requests from a cloud
WebRole and on-premises Windows client.

Creating and Processing Azure Queues
and Messages

The StorageClient class library includes a Queue.cs file, which defines the queue-related .NET classes
and event handler described in the following table:

Class or Event Handler Description
QueueStorage A factory method for QueueStorage.

MessageQueue Instances of this class represent a queue in a user’s storage
account.

QueueProperties Default properties of a MessageQueue.

Message Instances of this class represent a single message in the
queue.

MessageReceivedEventHandler
delegate and EventArgs

Listens for incoming messages by periodically polling for
incoming messages.

Figure 8-2 is a class diagram of the preceding queue-related classes and the event handler delegate and
its EventArgs.

QueueStorageRest and QueueRest classes in the RestQueue.cs file inherit from Queue.cs’s QueueStorage
and MessageQueue classes, respectively.

210

Chapter 8: Messaging with Azure Queues

Message 4

Queue

Message 3

Message 2

Message 1

Producer 3Producer 2Producer 1

Consumer 3Consumer 2Consumer 1

Figure 8-2: The StorageClient class
library’s queue-related classes and event
handler delegate.

Listing a Storage Account’s Queues
There’s only one queue-related StorageClient method at the storage account level: ListQueues(). To
list the queues for a specific storageaccount (oakleaf3 for this example), invoke the HTTP GET method
with http://oakleaf3.core.windows.net?comp=list as the URI. Listing 8-1 contains the HTTP request
and response messages for the MessageQueue.ListQueues() method.

Listing 8-1: The HTTP request and response messages for a list of the oakleaf3
account’s queues

GET /?comp=list&maxresults=50&timeout=30 HTTP/1.1
x-ms-date: Thu, 16 Apr 2009 21:22:11 GMT
Authorization: SharedKey oakleaf3: fs7sL9ZDPkbDQTM5If1fImxKxzRG9TicIfl01io1tbk=
Host: oakleaf3.queue.core.windows.net

HTTP/1.1 200 OK
Content-Type: application/xml
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: a652d4ac-e750–419e-80e5-d30c9feda67a
Date: Thu, 16 Apr 2009 21:21:05 GMT
Content-Length: 310

<?xml version="1.0" encoding="utf-8"?>
<EnumerationResults AccountName="http://oakleaf3.queue.core.windows.net/">

<MaxResults>50</MaxResults>
<Queues>
<Queue>

Continued

211

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 8-1: The HTTP request and response messages for a list of the oakleaf3
account’s queues (continued)

<QueueName>thumbnailmaker</QueueName>
<Url>http://oakleaf3.queue.core.windows.net/thumbnailmaker</Url>

</Queue>
<! — .. Additional <Queue> groups, if present — >

</Queues>
<NextMarker />

</EnumerationResults>

SharedKey values aren’t redacted because the Base64Binary-encoded HMACSHA256 hash is valid only
for a single request at a specific instant in x-ms-date date and time.

Listing 8-2 is sample code for the StorageClient library’s QueueStorage.ListQueues() method that’s
defined in Queue.cs. The default timeout value for GET and POST operations is 30 seconds with no retries.
To specify a different timeout value and RetryPolicy for operations on the queue, add the emphasized
commands.

Listing 8-2: Code to list queues in the storage account specified in the
ServiceConfiguraton.cscfg file

QueueStorage queueStorage = QueueStorage.
Create(StorageAccountInfo.GetDefaultQueueStorageAccountFromConfiguration());

queueStorage.Timeout = TimeSpan.FromSeconds(60);
queueStorage.RetryPolicy = RetryPolicies.RetryN(3, TimeSpan.FromSeconds(1));

IEnumerable<MessageQueue> queueList = queueStorage.ListQueues();

Issuing HTTP/REST Requests at the Queue Level
Following are the three methods that issue HTTP/REST requests at the queue level:

❑ GetQueue() creates a queue with a specified storage account.

❑ DeleteQueue() deletes an instantiated queue object.

❑ SetProperties() adds or overwrites optional custom metadata for the specified queue instance.

Create a Queue with a Specified Storage Account
To create a queue with the specified storage account, invoke the HTTP PUT method with
http://oakleaf3.queue.core.windows.net/myqueue as the URI. Listings 8-3 and 8-4 show a
typical REST and StorageClient-based request.

Listing 8-3: The HTTP PUT request and response messages to create a queue named
‘‘thumbnailmaker’’

PUT /thumbnailmaker?timeout=30 HTTP/1.1
x-ms-date: Thu, 16 Apr 2009 22:01:26 GMT

212

Chapter 8: Messaging with Azure Queues

Authorization: SharedKey oakleaf3: fkySK4GsmjFxK72dX3SiqA1iYCnjsrLv3jEWeqzSBpc=
Host: oakleaf3.queue.core.windows.net
Content-Length: 0

HTTP/1.1 201 Created
Transfer-Encoding: chunked
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: a8a6c17d-2ab1–439b-b886–2cc54b04c93b
Date: Thu, 16 Apr 2009 22:00:04 GMT

0

Listing 8-4 is the StorageClient code to add a thumbnailmaker queue to the account specified in the
ServiceConfiguration.cscfg file (oakleaf3).

Listing 8-4: Code to create a queue named ‘‘thumbnailmaker’’

QueueStorage queueStorage = QueueStorage.
Create(StorageAccountInfo.GetDefaultQueueStorageAccountFromConfiguration());

MessageQueue queue = queueStorage.GetQueue("thumbnailmaker");

The thumbnailmaker queue is a component of the Thumbnails.sln sample project of the Windows Azure
SDK (March 2009 CTP).

According to the SDK documentation, the MessageQueue.Name property value must be a valid Domain
Name System (DNS) name, conforming to the following naming rules:

❑ A queue name must start with a letter or number, and may contain only letters, numbers, and
the dash (-) character.

❑ The first and last letters in the queue name must be alphanumeric. The dash (-) character may
not be the first or last letter.

❑ All letters in a queue name must be lowercase.

❑ A queue name must be from 3 to 63 characters long.

Delete the Specified Queue and Its Contents Permanently
Listing 8-5 contains the HTTP request and response messages to delete a queue from the oakleaf3 stor-
age account.

Listing 8-5: The HTTP request and response messages to delete a queue named
‘‘thumbnailmaker’’

DELETE /thumbnailmaker?timeout=30 HTTP/1.1
x-ms-date: Thu, 16 Apr 2009 21:51:06 GMT
Authorization: SharedKey oakleaf3: RaZ3H1vpCVWfgqejwmtD4SuYIf/9vWzgbNvteOpw2go=
Host: oakleaf3.queue.core.windows.net
Content-Length: 0
Connection: Keep-Alive

Continued

213

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 8-5: The HTTP request and response messages to delete a queue named
‘‘thumbnailmaker’’ (continued)

HTTP/1.1 204 No Content
Content-Length: 0
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 3983249f-9d63–4f3a-8c45-c5c99408aced
Date: Thu, 16 Apr 2009 21:50:06 GMT

Listing 8-6 is the .NET code to delete the queue.

Listing 8-6: Code to delete a queue named ‘‘thumbnailmaker’’

QueueStorage queueStorage = QueueStorage.
Create(StorageAccountInfo.GetDefaultQueueStorageAccountFromConfiguration());

MessageQueue queue = queueStorage.GetQueue("thumbnailmaker");
queue.DeleteQueue();

Notice that you must create an instance of the queue to delete it.

Set or Update the User-Defined Metadata for the Queue
Custom metadata is associated with the queue as name-value pairs, which requires a reference to the
System.Collections.Specialized namespace. The request of Listing 8-7 adds or overwrites three metadata
items and their string values.

Listing 8-7: The HTTP request and response messages to add three metadata
properties to the ‘‘thumbnailmaker’’ queue

PUT /thumbnailmaker?comp=metadata&timeout=30 HTTP/1.1
x-ms-date: Thu, 16 Apr 2009 23:34:56 GMT
x-ms-meta-prop1: value1
x-ms-meta-prop2: value2
x-ms-meta-prop3: value3
Authorization: SharedKey oakleaf3: rkff+mq0vD7HLcFuIbr10yHH3msD2HSBtLvtwckm/6uo=
Host: oakleaf3.queue.core.windows.net
Content-Length: 0
Connection: Keep-Alive

HTTP/1.1 204 No Content
Content-Length: 0
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 08a829e2–96a8–4c08-a846–6c34909b04a0
Date: Thu, 16 Apr 2009 23:34:28 GMT

Creating and adding the name/value metadata pairs follows the obscure pattern shown in Listing 8-8.

214

Chapter 8: Messaging with Azure Queues

Listing 8-8: Code to add three metadata properties to the ‘‘thumbnailmaker’’ queue

QueueProperties queueProps = new QueueProperties();
NameValueCollection propsColl = new NameValueCollection();
propsColl.Add("prop1", "value1");
propsColl.Add("prop2", "value2");
propsColl.Add("prop3", "value3");
queueProps.Metadata = propsColl;
queue.SetProperties(queueProps);

Working with HTTP/REST at the Message Level
The following table lists the five most important message-level methods of the MessageQueue object for
the Windows Azure SDK (March 2009 CTP).

MessageQueue.Method() Description
MessageQueue.PutMessage
(Message, MessageTTL)

Adds a new message to the queue’s tail. MessageTTL
specifies the time-to-live interval for the message. The
message can be stored in text or binary (byte array) format
but message content returns in Base64Binary-encoded
format only.

MessageQueue.ApproximateCount() Retrieves the approximate number of messages in the
queue and other optional queue metadata, if present.

MessageQueue.GetMessage[s]
([NumOfMessages,
VisibilityTimeout])

Retrieves one or more NumOfMessages messages from the
head of the queue and optionally makes these messages
invisible for the given VisibilityTimeout in seconds,
which defaults to 30 seconds and has a maximum of two
hours. This method returns a PopReceipt. There is no
guaranteed return order of the messages from a queue, and
a message may be returned more than once.

MessageQueue.PeekMessage[s]
([NumOfMessages])

Retrieves one or more NumOfMessages messages from the
head of the queue without making the messages invisible to
other callers. This operation returns a PopReceipt for each
of the message returned.

MessageQueue.DeleteMessage
(PopReceipt)

Deletes the message associated with the PopReceipt which
is returned from an earlier GetMessage call. A message
that’s not deleted reappears on the queue after its
VisibilityTimeout period.

MessageQueue.Clear() Deletes all the messages from the queue instance. The caller
should retry this operation until it returns true to ensure
that no messages remain in the queue.

215

Part II: Taking Advantage of Cloud Services in the Enterprise

Add a Message to the Queue
Listing 8-9 contains the request and response messages to add a brief string message (Test message 1)
having TTL = 20 seconds to the thumbnailmaker queue.

Listing 8-9: The HTTP request and response messages to add a simple string message
to the ‘‘thumbnailmaker’’ queue

POST /thumbnailmaker/messages?messagettl=20&timeout=30 HTTP/1.1
x-ms-date: Fri, 17 Apr 2009 19:07:03 GMT
Authorization: SharedKey oakleaf3:oWF+mq0vD7HLcFuIbr10yHH3msD2HSBtLvtwckm/6uo=
Host: oakleaf3.queue.core.windows.net
Content-Length: 76
Expect: 100-continue
<QueueMessage>

<MessageText>VGVzdCBtZXNzYWdlIDE=</MessageText>
</QueueMessage>

HTTP/1.1 201 Created
Transfer-Encoding: chunked
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 4938b0ff-7628–45e3–8bff-40c1b13af513
Date: Fri, 17 Apr 2009 19:06:11 GMT
0

The code of Listing 8-10 creates a new queue and adds three brief messages to it.

Listing 8-10: Code to create a queue and add three simple string messages to it

QueueStorage queueStorage = QueueStorage.Create(StorageAccountInfo.
GetDefaultQueueStorageAccountFromConfiguration());

MessageQueue queue = queueStorage.GetQueue("thumbnailmaker");
Message testMsg = new Message("Test message 1");
bool putMsg = queue.PutMessage(testMsg, 20);
testMsg = new Message("Test message 2");
putMsg = queue.PutMessage(testMsg, 20);
testMsg = new Message("Test message 3");
putMsg = queue.PutMessage(testMsg, 20);

Get the Approximate Number of Messages in the Queue
To determine whether your WorkerRole process is keeping up with requests, it’s a good practice to
periodically test the length of the queue to verify that it’s not growing to an inordinate length. Listing 8-11
shows the request and response messages for a queue containing 18 messages and three sample metadata
properties.

Listing 8-11: The HTTP request and response messages to retrieve the approximate
number of messages in a queue (emphasized), along with any other custom metadata
added to it

GET /thumbnailmaker?comp=metadata&timeout=30 HTTP/1.1
x-ms-date: Fri, 17 Apr 2009 19:53:35 GMT

216

Chapter 8: Messaging with Azure Queues

Authorization: SharedKey oakleaf3:8umeUClWuRyCcP9lE+LDkmF1vv+TjIDvkZTPhuqhMJY=
Host: oakleaf3.queue.core.windows.net

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 3f86938f-6d00–4f42–9b3a-05f86a9de42b
x-ms-approximate-messages-count: 18

x-ms-meta-prop1: value1
x-ms-meta-prop2: value2
x-ms-meta-prop3: value3
Date: Fri, 17 Apr 2009 19:52:34 GMT

0

Listing 8-12 shows the StorageClient code to perform the same task as Listing 8-11.

Listing 8-12: Code to retrieve the approximate number of messages in a specified
queue as an integer

int ApproxNum = queue.ApproximateCount();

Future Azure versions will include APIs for service manager tasks, so you’ll be able to add nodes to scale
up your WorkerRole as the queue increases in length and reduce nodes as demand subsides.

Get a Message from the Queue
Listing 8-13 contains the HTTP request and response messages for retrieving a single message from a
queue. Retrieving more than one message at a time from the queue is relatively uncommon.

Listing 8-13: The HTTP request and response messages to retrieve a single message
from the selected queue

GET /thumbnailmaker/messages?numofmessages=1&timeout=30 HTTP/1.1
x-ms-date: Fri, 17 Apr 2009 19:07:13 GMT
Authorization: SharedKey oakleaf3:RaZ3H1vpCVWfgqejwmtD4SuYIf/9vWzgbNvteOpw2go=
Host: oakleaf3.queue.core.windows.net

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Content-Type: application/xml
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 380bfd79–0073–456e-9b06–72e28bbd75ab
Date: Fri, 17 Apr 2009 19:06:17 GMT

1BA
<?xml version="1.0" encoding="utf-8"?>
<QueueMessagesList>

<QueueMessage>
<MessageId>7e74cf00-bf24–4aad-aa18–04d719a18821</MessageId>

Continued

217

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 8-13: The HTTP request and response messages to retrieve a single message
from the selected queue (continued)

<InsertionTime>Fri, 17 Apr 2009 19:06:48 GMT</InsertionTime>
<ExpirationTime>Fri, 17 Apr 2009 19:06:31 GMT</ExpirationTime>
<PopReceipt>AQAAALBGaaiPv8kB</PopReceipt>
<TimeNextVisible>Fri, 17 Apr 2009 19:06:48 GMT</TimeNextVisible>
<MessageText>VGVzdCBtZXNzYWdlIDE=</MessageText>

</QueueMessage>
</QueueMessagesList>
0

You should treat the PopReceipt value as opaque because the Azure team warns that its format might
change without notice.

Listing 8-14 is the code to retrieve a single message from the queue.

Listing 8-14: Code to retrieve a single message from a designated queue

Message getMsg = queue.GetMessage();

The getMsg variable receives the PopReceipt value. Retrieving and processing messages in a while loop,
such as that in Listing 8-15, is a common practice:

Listing 8-15: Typical code loop to retrieve and process a single message as it arrives
in the queue

// ..
while (true)
{

try
{

Message msg = queue.GetMessage();
if (msg != null) // Test for PopReceipt presence
{

string content = msg.ContentAsString();

// Call processing procedures here

// If processing is successful
queue.DeleteMessage(msg);

}
else
{

// Wait 1000 milliseconds
Thread.Sleep(1000);

}
}
catch (StorageException e)

218

Chapter 8: Messaging with Azure Queues

{
// Write details of StorageExceptions to the log
// Successive tries might recover from the problem
// after message regains visibility

RoleManager.WriteToLog("Error",
string.Format("Exception when processing queue message: ‘{0}’",
e.Message));

}
}

Your code must delete the message after processing the message successfully to prevent it from being
processed again after it becomes visible.

Peek at a Message in the Queue
Listing 8-16’s request and response messages let your code inspect a message without setting it invisible:

Listing 8-16: The HTTP request and response messages to inspect, rather than
process, a single message

GET /thumbnailmaker/messages?numofmessages=1&peekonly=True&timeout=30 HTTP/1.1
x-ms-date: Fri, 17 Apr 2009 19:03:24 GMT
Authorization: SharedKey oakleaf3:fs7sL9ZDPkbDQTM5If1fImxKxzRG9TicIfl01io1tbk=
Host: oakleaf3.queue.core.windows.net

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Content-Type: application/xml
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 0eaa5187–355c-4875–91b4-f100001dbc33
Date: Fri, 17 Apr 2009 19:02:29 GMT

151
<?xml version="1.0" encoding="utf-8"?>
<QueueMessagesList>

<QueueMessage>
<MessageId>8f423dbe-29c7–4131–801d-6ad36949e216</MessageId>
<InsertionTime>Fri, 17 Apr 2009 19:02:12 GMT</InsertionTime>
<ExpirationTime>Fri, 17 Apr 2009 19:02:32 GMT</ExpirationTime>
<MessageText>VGVzdCBtZXNzYWdlIDM=</MessageText>

</QueueMessage>
</QueueMessagesList>
0

The code of Listing 8-17 enables inspecting a message without setting it invisible:

Listing 8-17: Code to inspect a single message in a designated queue

Message peekMsg = queue.PeekMessage();

219

Part II: Taking Advantage of Cloud Services in the Enterprise

Delete a Message from the Queue
As mentioned in and after Listing 8-15, you must delete messages from the queue after processing them.
Listing 8-18 contains the HTTP request and response messages to delete a message with the designated
PopReceipt value.

Listing 8-18: The HTTP request and response messages to delete a single message
having the designated PopReceipt value

DELETE /thumbnailmaker/messages/04178ce6–254b-4fb8-bc5b-
7641eb70a089?popreceipt=AQAAAJCmmh6Pv8kB&timeout=30 HTTP/1.1
x-ms-date: Fri, 17 Apr 2009 19:03:25 GMT
Authorization: SharedKey oakleaf3:fkySK4GsmjFxK72dX3SiqA1iYCnjsrLv3jEWeqzSBpc=
Host: oakleaf3.queue.core.windows.net
Content-Length: 0

HTTP/1.1 204 No Content
Content-Length: 0
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: f54a6398–6132–4cc1–9104-ca2bde5f8717
Date: Fri, 17 Apr 2009 19:02:30 GMT

For completeness, Listing 8-19 is the command to delete a single message and return true if deletion
succeeds.

Listing 8-19: Code to delete a single message with the specified PopReceipt value
(highlighted) in a designated queue

bool delMsg = queue.DeleteMessage(getMsg);

Clearing All Messages from the Queue
Listing 8-20 shows the HTTP request and response messages for removing all messages from the queue
without processing them.

Listing 8-20: The HTTP request and response messages to clear all messages from the
queue

DELETE /thumbnailmaker/messages?timeout=30 HTTP/1.1
x-ms-date: Fri, 17 Apr 2009 21:46:15 GMT
Authorization: SharedKey oakleaf3:DTUJNwdPOI16nR/Pdmb9dWO+QdimgHtp9Nmr9Tgpk9k=
Host: oakleaf3.queue.core.windows.net
Content-Length: 0

HTTP/1.1 204 No Content
Content-Length: 0
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 307c7487-a4f4–4f4a-8c4e-6545cf3b1270
Date: Fri, 17 Apr 2009 21:45:09 GMT

220

Chapter 8: Messaging with Azure Queues

Listing 8-21 illustrates a loop to ensure that all messages are cleared:

Listing 8-21: Code to ensure clearing all messages from a queue

while (!queue.Clear())
{

Thread.Sleep(250);
}

The preceding loop will attempt to clear remaining messages at quarter-second intervals.

Enhancing the Thumbnails.sln Sample
Solution

Real-world services that rely on Azure Queues usually combine a WorkerRole and WebRole in a single
project. The Thumbnails folder in the \Program Files\Windows Azure SDK\v1.0\samples.zip archive
contains the source code for the sample Thumbnails.sln service. Thumbnails.sln combines Web and
WorkerRoles to upload graphics files from the user’s local file system into Azure Blobs and display in
a bound ListView control thumbnail images from blobs created from the file versions. A WorkerRole
handles the thumbnail generation process asynchronously by polling the ‘‘thumbnailmaker’’ queue at
one-second intervals. A ScriptManager control manages client script for AJAX-enabled ASP.NET Web
pages. An AJAX UpdatePanel contains the ListView to partially render the page asynchronously and
minimize UI flashing on postbacks.

Figure 8-3 shows the \WROX\Azure\Chapter08\Thumbnails2\Thumbnails.sln project’s page with 15
added thumbnails of images used in OakLeafBlog posts during 2009 and earlier.

Figure 8-3: The original Thumbnails.sln project’s page after the addition of 15 thumbnails of images from
OakLeaf blog posts.

221

Part II: Taking Advantage of Cloud Services in the Enterprise

Thumbnails2 includes AJAX modifications by Steve Marx, a Microsoft developer evangelist, to reduce
network traffic generated by polling for recently added thumbnails. The later ‘‘Moving to Client-Side
Detection of Added Thumbnail Images’’ section describes the changes.

Understanding the Interaction Between WebRoles and
WorkerRoles

Interaction between WebRole and WorkerRole projects in the same solution usually is limited
to instructions in the form of messages in queues with state contained in persistent blobs or
tables. This convention, which discourages sharing state with static classes’ static properties, pro-
vides a very disconnected relationship between the UI and background processes and enhances
scalability.

The WorkerRole and its MessageQueue object is the only means of communicating instructions to and
from Azure services by programs outside the Azure Fabric. Blobs and tables only communicate state.

The Azure team wrote the original Thumbnails.sln project to demonstrate the recommended
Web/Queue/Worker pattern. In the spirit of ‘‘one picture is worth 1,000 words,’’ Figure 8-4 is a flow
diagram that shows the MessageQueue interconnection between the Thumbnails_WebRole project’s code
in Default.aspx.cs and the Thumbnails_WorkerRole code in WorkerRole.cs.

The ServiceConfiguration.cscfg file contains <Role> groups for both roles. Listing 8-22 contains the
default document for the Thumbnails Cloud Service project for local storage; values in this file prevail
over those in Web.config and App.config files.

Listing 8-22: The default ServiceConfigure.cscfg document for a project containing a
WebRole and WorkerRole

<?xml version="1.0"?>
<ServiceConfiguration serviceName="Thumbnails"
xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration">

<Role name="WebRole">
<Instances count="1"/>
<ConfigurationSettings>

<Setting name="BlobStorageEndpoint" value="http://127.0.0.1:10000/" />
<Setting name="QueueStorageEndpoint" value="http://127.0.0.1:10001/" />
<Setting name="TableStorageEndpoint" value="http://127.0.0.1:10002/" />
<Setting name="AccountName" value="devstoreaccount1"/>
<Setting name="AccountSharedKey" value="Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUz

FT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw=="/>
</ConfigurationSettings>

</Role>
<Role name="WorkerRole">
<Instances count="1"/>
<ConfigurationSettings>

<Setting name="BlobStorageEndpoint" value="http://127.0.0.1:10000/" />
<Setting name="QueueStorageEndpoint" value="http://127.0.0.1:10001/" />
<Setting name="TableStorageEndpoint" value="http://127.0.0.1:10002/" />
<Setting name="AccountName" value="devstoreaccount1"/>

222

Chapter 8: Messaging with Azure Queues

<Setting name="AccountSharedKey" value="Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUz
FT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw=="/>

</ConfigurationSettings>
</Role>

</ServiceConfiguration>

Start() Method

Thumbnails_WorkerRole

Page_PreRender
Event Handler

Thumbnails_WebRole

GetPhotoGallery-
Container() Method

Thumbnails List-
View DataBind

Assign
Thumbnails List-
View DataSource

GetPhotoGallery-
Container().

CreateBlob(blob)

CreateOnceCon-
tainerAndQueue()

Method

Write Error
Message to Log

Create “photogal-
lery” BlobContainer

and “thumbnail-
maker” Queue

Create “photogal-
lery” BlobContainer

and “thumbnail-
maker” Queue

Test
CreateContainer()
and CreateQueue()

Methods
GetThumbnail-

MakerQueue().Put
Message(new Mes-
sage(props.Name))

New
Message

Created?

Created?

Message
= null

Failure

Done

submitButton_
Click EventHandler

Assign
BlobProperties blob

File
Path

Browse

“thumbnailmaker”
queue.GetMessage

CreateThumbnail()
Graphic Method

thumbnails
BlobContents

Blob Properties
DeleteMessage()

Sleep 1
Second

Yes

Yes

Yes

No

No

No

PostBack

Added to
“thumbnailmaker”

Queue

Figure 8-4: Flow Diagram for the Thumbnails_WebRole and Thumbnails_WorkerRole projects
in the Thumbnails.sln solution.

223

Part II: Taking Advantage of Cloud Services in the Enterprise

The ServiceDefinition.csdef file has duplicate <Role> sections for WebRole and WorkerRole also.

Specifying twice the initial number of instances of WorkerRoles as WebRoles for worker processes that
require substantial computing resources is a common practice.

Thumbnail_WebRole Methods and Event Handlers
The following table describes the methods and event handlers of the Thumbnail_WebRole project.

Method or Event Handler Name Description
CreateOnceContainerAndQueue() Tests capability of Development Storage to create a

photogallery blob container for original and thumbnail
images and a thumbnailmaker queue for messages resulting
from adding a new image

GetPhotoGalleryContainer() Creates and returns the photogallery BlobContainer

GetThumbnailMakerQueue() Creates and returns the thumbnailmaker queue

submitButton_Click() event handler Adds a photogallery blob with the user-selected image
file and puts a message with the blob name on the
thumbnailmaker queue

Page_PreRender() event handler Refreshes the thumbnails ListView.DataSource property
value and applies the ListView.DataBind() method

The Page_Prerender event fires every second (or more) when the Default.aspx page is open in a client
browser. The actual timing of these events depends on the download and upload speeds of the client’s
Internet connection and the number of thumbnail images in the thumbnails BlobContainer.

Thumbnail_WorkerRole Methods and Event Handlers
The following table describes the methods and event handlers of the Thumbnail_WorkerRole project.

Method Name Description
Start() Creates a photogallery BlobContainer and thumbnailmaker Queue on

application startup and tests local Development Storage’s capability to
store blobs and queues in a five-second while loop; if successful, tests for
new messages is a one-second while loop, which causes a postback. If a
new message is found, invokes the CreateThumbnail() method to add a
thumbnail blob to the container and deletes the message.

CreateThumbnail() Creates a *.jpg thumbnail Stream with a 128-px maximum width or height
from the input bitmap Stream, which is in a common graphics format. The
Browse dialog’s Pictures type supports *.jpg, *.jpeg, and *.png formats.

GetHealthStatus() Not implemented or used. The Development and Azure Fabrics
continually poll this value to determine the health of a role.

224

Chapter 8: Messaging with Azure Queues

The preceding Start() method overrides the default System.Threading.Start() method.

The CreateThumbnail() method uses HighQualityBicubic interpolation, AntiAlias smoothing
mode, and HighQuality pixel-offset mode, which is the highest quality and most computing-intensive
combination.

Analyzing Network Traffic Implications of Polling for Blob
Updates

The Thumbnails_WebRole project’s default design attempts to transmit large HTTP request and response
messages to clients every second because the Page_PreRender event handler updates the thumbnails
ListView control each time the Thumbnails_WorkerRole project polls the message queue. Listing 8-23 is
the HTTP request message, which contains the partial ViewState for the thumbnails ListView control
with 10 thumbnail images.

Listing 8-23: The Thumbnails_WebRole project’s HTTP request message with
10 thumbnail images with partial ViewState contents

POST /Default.aspx HTTP/1.1
Accept: */*
Accept-Language: en-us
Referer: http://oakleaf6.cloudapp.net/Default.aspx
x-microsoftajax: Delta=true
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Cache-Control: no-cache
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0;
GTB6; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.5.21022;
.NET CLR 3.5.30428; .NET CLR 3.5.30729; .NET CLR 3.0.30618; MS-RTC LM 8;
InfoPath.2; OfficeLiveConnector.1.3; OfficeLivePatch.1.3)
Host: oakleaf6.cloudapp.net
Content-Length: 2206
Connection: Keep-Alive
Pragma: no-cache

sm1=up1%7Ctimer1&_EVENTTARGET=timer1&_EVENTARGUMENT=&_VIEWSTATE=%2FwEPDw
UJOTA5OTI0ODEyD2QWAgIDDxYCHgdlbmN0eXBlBRNtdWx0aXBhcnQvZm9ybS1kYXRhFgICBw9kF
gJmD2QWAgIBDxQrAAIPFgQeC18hR..
W1ibmFpbHMvMTYzMzc1ODQ4NDU0MTI4Mzc1MF82ZDAzYTEwNy1kZmM3LTQ1NTEtODIwMS04MDUy
ZGRiOWVjMjNkZBgBBQp0aHVtYm5haWxzDzwrAAoCBzwrAAoACAIKZEurQMs6U2KWVZfJSazWYOc
Au%2BBU&_EVENTVALIDATION=%2FwEWAgKOvLC7AQKSuuDUC%2Flfv0QnrZPAfITZ19v9fSgx%
2BFOG&_ASYNCPOST=true&

The size of the request headers is 702 bytes and the request payload is 2,206 bytes for a total message size
of 2,908 bytes.

Listing 8-24 is the HTTP response message, which contains the partial ViewState for the thumbnails
ListView control with ListView data for 3 of the 10 thumbnail images.

225

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 8-24: The Thumbnails_WebRole project’s HTTP request message with 10
thumbnail images with partial ViewState contents

HTTP/1.1 200 OK
Cache-Control: private
Content-Type: text/plain; charset=utf-8
Server: Microsoft-IIS/7.0
X-AspNet-Version: 2.0.50727
X-Powered-By: ASP.NET
Date: Wed, 22 Apr 2009 22:24:21 GMT
Content-Length: 5189

2368|updatePanel|up1|

<img id="thumbnails_ctrl0_photoImage"
src="http://oakleaf3.blob.core.windows.net/photogallery/thumbnails/16337574
40636206298_114f3d2f-4fbc-4d83–9831–954ae0693734" style="border-width:0px;"
/>

<img id="thumbnails_ctrl1_photoImage"
src="http://oakleaf3.blob.core.windows.net/photogallery/thumbnails/16337584
73471680000_549f111f-f1e4–4652-b886-d1b703740797" style="border-width:0px;"
/>

..
<img id="thumbnails_ctrl9_photoImage"

src="http://oakleaf3.blob.core.windows.net/photogallery/thumbnails/16337584
84541283750_6d03a107-dfc7–4551–8201–8052ddb9ec23" style="border-width:0px;"
/>

<span id="timer1"
style="visibility:hidden;display:none;">

|0|hiddenField|_EVENTTARGET||0|hiddenField|_EVENTARGUMENT||2044|hiddenFie
ld|_VIEWSTATE|/wEPDwUJOTA5OTI0ODEyD2QWAgIDDxYCHgdlbmN0eXBlBRNtdWx0aXBhcnQv
Zm9ybS1kYXRhFgICBw9kFgJmD2QWAgIBDxQrAAIPFgQeC18hRGF0YUJvdW5kZx4LXyFJdGVtQ29
1bnQCCmRkFgJmD2QWFAIBD2QWAgIBDw8WAh4ISW1hZ
..
S04MDUyZGRiOWVjMjNkZBgBBQp0aHVtYm5haWxzDzwrAAoCBzwrAAoACAIKZEurQMs6U2KWVZfJ
SazWYOcAu+BU|48|hiddenField|_EVENTVALIDATION|/wEWAgKOvLC7AQKSuuDUC/lfv0Qnr
ZPAfITZ19v9fSgx+FOG|0|asyncPostBackControlIDs|||0|postBackControlIDs|||4|up
datePanelIDs||tup1|0|childUpdatePanelIDs|||3|panelsToRefreshIDs||up1|2|asyn
cPostBackTimeout||90|12|formAction||Default.aspx|13|pageTitle||Photo
Gallery|149|scriptBlock|ScriptPath|/ScriptResource.axd?d=9YtLxwU-
nmRnm7oJ9nOfEaztduuiriMqe964NLCEARKknzUa7EJGulUSq-
QKJyN3_XQG98ij_ElfezvDJkF-
OgjZtff28LO1U1_MHbdocg1&t=ffffffff9a77c993|155|scriptStartupBlock|ScriptCon
tentNoTags|Sys.Application.add_init(function() {

$create(Sys.UI._Timer,
{"enabled":true,"interval":1000,"uniqueID":"timer1"}, null, null,

226

Chapter 8: Messaging with Azure Queues

$get("timer1"));
});
|

Calculating Cloud Data Egress and Ingress Costs
The size of the response headers is 221 bytes and the response payload is 5,981 bytes for a total message
size of 6,202 bytes. The total size of the request and response message is 2,908 + 6,202 = 9,110 bytes.
A single user with a browser permanently connected to the service will generate 9.11KB/s of traffic or
(9.11 * 60 * 60 * 24 * 30) = 23,613,120 KB/month = 23,613 GB/month. Microsoft hadn’t published data
ingress and egress charges when this book was written but Amazon Web Services’ EC2 or S3 would
cost an average of about ((2,908 * $0.10) + (6,202 * $0.15))/9,110 = $0.134/GB, so a single continuously
connected user would cost 23,613 * $0.139 = $3,165.48 per month in bandwidth charges.

When this book was written, Microsoft charged US$ 0.10/GB for data ingress (uploaded request mes-
sages) and $0.15/GB for data egress (downloaded response messages).

Obviously, passing large chunks of ViewState in both directions would be unjustified if it isn’t required to
keep clients up to date with added thumbnails. The remaining sections of this chapter discuss techniques
for minimizing polling message size and frequency.

Testing the Effect of Disabling ViewState for the GridView
To disable the thumbnails GridView’s ViewState property, launch the SDK’s version of Thumbnails.sln,
open Default.aspx in Design View, right-click the thumbnails GridView, and set the EnableViewState
property value to False.

The \WROX\Azure\Chapter08\Thumbnails2\Thumbnails2.sln project’s EnableViewState property
is False for the GridView.

Change the ServiceConfiguration.cscfg file to point to Azure Storage Services, deploy the modified project
to Azure Staging, start Fiddler2 or another HTTP proxy, and add a thumbnail for a new image. The HTTP
request and response messages will be similar to those shown in Listing 8-25.

Listing 8-25: HTTP request and partial response messages for adding a thumbnail
image with the GridView’s ViewState turned off

POST /Default.aspx HTTP/1.1
Accept: */*
Accept-Language: en-us
Referer: http://c1529552–0b46–4cdb-94ca-c57afb3454e4.cloudapp.net/Default.aspx
x-microsoftajax: Delta=true
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Cache-Control: no-cache

Continued

227

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 8-25: HTTP request and partial response messages for adding a thumbnail
image with the GridView’s ViewState turned off (continued)

Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0;
GTB6; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.5.21022;
.NET CLR 3.5.30428; .NET CLR 3.5.30729; .NET CLR 3.0.30618; MS-RTC LM 8;
InfoPath.2; OfficeLiveConnector.1.3; OfficeLivePatch.1.3)
Host: c1529552–0b46–4cdb-94ca-c57afb3454e4.cloudapp.net
Content-Length: 384
Connection: Keep-Alive
Pragma: no-cache

sm1=up1%7Cup1&_EVENTTARGET=up1&_EVENTARGUMENT=&_VIEWSTATE=%2FwEPDwUKMTg5
Mzc1MTYwNA9kFgICAQ8WAh4HZW5jdHlwZQUTbXVsdGlwYXJ0L2Zvcm0tZGF0YWQYAQUKdGh1bWJ
uYWlscw88KwAKAgc8KwALAAgCC2SFWZDKhqAaOPzva5eASsIza%2FKThg%3D%3D&_EVENTVALI
DATION=%2FwEWAwKm5OL7CgKSuuDUCwLiscFWTsrhGkwLuRvDmUJ036ugm2zSSFA%3D&uploade
dBlobName=1633760951352592276_5d79389a-0f12–491d-981e-
132d55fa48b7&_ASYNCPOST=true

HTTP/1.1 200 OK
Cache-Control: private
Content-Type: text/plain; charset=utf-8
Server: Microsoft-IIS/7.0
X-AspNet-Version: 2.0.50727
X-Powered-By: ASP.NET
Date: Thu, 23 Apr 2009 14:52:16 GMT
Content-Length: 3442

2950|updatePanel|up1|

<img id="thumbnails_ctrl0_photoImage"
src="http://oakleaf3.blob.core.windows.net/photogallery/thumbnails/16337574
40636206298_114f3d2f-4fbc-4d83–9831–954ae0693734" style="border-width:0px;"
/>
..

<img id="thumbnails_ctrl9_photoImage"
src="http://oakleaf3.blob.core.windows.net/photogallery/thumbnails/16337584
84541283750_6d03a107-dfc7–4551–8201–8052ddb9ec23" style="border-width:0px;"
/>

<img id="thumbnails_ctrl10_photoImage"
src="http://oakleaf3.blob.core.windows.net/photogallery/thumbnails/16337609
49623206208_d1326fb8-ad84–4ec3–9511–7e3548ff0920" style="border-width:0px;"
/>

|144|hiddenField|_VIEWSTATE|/wEPDwUKMTg5Mzc1MTYwNA9kFgICAQ8WAh4HZW5jdHlwZQ
UTbXVsdGlwYXJ0L2Zvcm0tZGF0YWQYAQUKdGh1bWJuYWlscw88KwAKAgc8KwAMAAgCDGQUSzBhE
R/hxlgzwh8QwLLIHdcqqw==|56|hiddenField|_EVENTVALIDATION|/wEWAwLOjelaApK64N
QLAuKxwVbbg55vMN4DLmfvx0sGaYOQZhZgLg==|0|asyncPostBackControlIDs|||0|postBa
ckControlIDs|||4|updatePanelIDs||tup1|0|childUpdatePanelIDs|||3|panelsToRef
reshIDs||up1|2|asyncPostBackTimeout||90|12|formAction||Default.aspx|13|page
Title||Photo Gallery|

228

Chapter 8: Messaging with Azure Queues

The request header is 702 bytes and payload is 384 bytes for a total of 1,086 bytes. The response header
is 221 bytes and payload is 3,442 bytes for a total of 3,663 bytes. The traffic saving by eliminating View-
State data is 9110 – (1086 + 3663) = 4,361 bytes or about 48% of the original traffic. Although this is a
worthwhile saving, potential bandwidth cost of $1,500 or more per user remains unacceptable.

Moving to Client-Side Detection of Added Thumbnail
Images

Steve Marx recommended changes to my enhanced PhotoGallery version of the original Thumbnails
project in a comment to the ‘‘Scalability and Cost Issues with Windows Azure Web and WorkerRole
Projects – Live Demo’’ OakLeaf blog post (http://oakleafblog.blogspot.com/2009/04/scalability-
issues-with-windows-azure.html) of April 22, 2009. Marx suggested using a Remote Procedure Call
(RPC, not HTTP) method with AJAX to call the web server and ask whether the blob that was just
uploaded has a thumbnail yet. After it has a thumbnail, trigger an UpdatePanel asynchronous post-
back, and then stop any polling after that. This approach makes a new thumbnail immediately visible to
the user who uploads it but not to other users. Other users must manually refresh their browser to see
added thumbnails.

Here are the steps that Marx suggested:

1. Add a HiddenField below the FileUpload and Button controls to store the name of the new
blob:

<asp:HiddenField ID="uploadedBlobName" runat="server" />

2. Add code to set the uploadBlobName value in the submitButton_Click event handler:

uploadedBlobName.Value = props.Name

3. Add a static method to handle the polling:

[WebMethod]
public static bool IsThumbnailReady(string name)
{

return BlobStorage.Create(StorageAccountInfo.

GetDefaultBlobStorageAccountFromConfiguration()).
GetBlobContainer("photogallery").
DoesBlobExist(string.Format("thumbnails/{0}", name));

}

4. Add EnablePageMethods="true" to the ScriptManager to enable the static method:

<asp:ScriptManager ID="sm1" runat="server" EnablePageMethods="true" />

5. Add client-side script after the </body> element to perform the poll:

<script type="text/javascript">
Sys.WebForms.PageRequestManager.getInstance()

229

Part II: Taking Advantage of Cloud Services in the Enterprise

.add_pageLoaded(function(sender,
args) {

if (args.get_panelsUpdated() == ‘’) {
var blobname = $get(’<%= uploadedBlobName.ClientID %>’).value;
if (blobname != ‘’) {

checkReady(blobname);
}

}
});
function checkReady(blobname) {

PageMethods.IsThumbnailReady(blobname, function(result) {
if (result) {

doPostBack(’<%= up1.ClientID %>’, ‘’);
}
else {

setTimeout(function() { checkReady(blobname) }, 1000);
}

});
}

</script>

Adding the preceding code results in a poll every second with a lightweight ‘‘is the thumbnail ready’’
ping after submitting a new source image blob. The operation consists of 67 bytes of posted data and
a 10-byte response and might need to be done two or more times, depending on the time that the
CreateThumbnail() method requires to generate thumbnails. When complete, an UpdatePanel refresh
occurs, which requires the 4,749 bytes calculated in the previous section.

In mixed mode, with the project running in the Development Fabric connecting to Azure cloud-based
Data Storage, Fiddler2 displays the HTTP request and response messages shown in Listing 8-26 every
second.

Listing 8-26: HTTP request and response messages generated by WorkerRole polling

GET /thumbnailmaker/messages?numofmessages=1&timeout=30 HTTP/1.1
x-ms-date: Thu, 23 Apr 2009 18:28:29 GMT
Authorization: SharedKey
oakleaf3:rH4IzA7B+XpZL2O0jqxjJRK4QiYyIIztUTb+FVeR5MQ=
Host: oakleaf3.queue.core.windows.net

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Content-Type: application/xml
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: addaaadd-61a9–4667-a5f9–11bf8c6fde68
Date: Thu, 23 Apr 2009 18:26:48 GMT

3E
<?xml version="1.0" encoding="utf-8"?><QueueMessagesList />
0

To prevent one-second postbacks from the WorkerRole refreshing the DataSource property value of the
thumbnails ListView every second, add an if (!Page.IsPostBack) block to wrap the Page_PreRender
event handler’s code. Opening the page in the browser sets the DataSource property value, but

230

Chapter 8: Messaging with Azure Queues

subsequent Browse operations cause the ListView to disappear. To prevent the disappearance, do the
following:

1. Add a private static bool refreshData = true; variable to the _Default class.

2. Wrap the Page_PreRender event handler with the emphasized if block:

protected void Page_PreRender(object sender, EventArgs e)
{

if (refreshData || !Page.IsPostBack)
{

thumbnails.DataSource = from o in GetPhotoGalleryContainer().
ListBlobs("thumbnails/", false)

select new { Url = ((BlobProperties)o).Uri };
thumbnails.DataBind();
if (!Page.IsPostBack)

refreshData = false;
}

}

3. Add a refreshData = true; statement after the close of the submitButton_Click event han-
dler’s if (upload.HasFile) block:

Figure 8-5 shows the changes made to the original Thumbnails.sln project by the Thumbnails2.sln project
as shaded elements.

The \WROX\Azure\Chapter08\Thumbnails2\Thumbnails2.sln project has the preceding modifications
applied. To test the project in Mixed mode, change the ServiceConfiguration.cscfg file’s <Role> sections
to correspond to your AccountName and AccountSharedKey values.

Enabling Thumbnail Deletion
The original Thumbnails.sln and modified Thumbnails2.sln solutions enable adding thumbnails
to the containers but don’t support deleting them. The \WROX\Azure\Chapter08\PhotoGallery\
PhotoGallery.sln project adds a gvBlobs GridView that lists the thumbnail blobs and lets users delete the
thumbnail and the associated original image blob. Figure 8-6 shows the PhotoGallery service running in
the Production Fabric with 11 thumbnails loaded.

Adding the gvBlobs GridView to the Thumbnails2.sln project is a relatively straightforward process:

1. Add the GridView to the update panel under the ListView and specify column properties.
The blobs’ Content-Language and Content-Encoding attributes are empty, so those
columns aren’t displayed.

2. Add a Delete command field with a HeaderText property of Blobs.

3. Add the following instructions to the Page_PreRender event handler after the
thumbnails.DataBind instruction:

gvBlobs.DataSource = GetPhotoGalleryContainer().ListBlobs("thumbnails/",

231

Part II: Taking Advantage of Cloud Services in the Enterprise

false);
gvBlobs.DataBind();

4. Add a gvBlobs_RowDeleting event handler with the code of Listing 8-27:

Start() Method

Thumbnails_WorkerRole

Page_PreRender
Event Handler

Thumbnails_WebRole

GetPhotoGallery-
Container() Method

Page_Loaded, Get
uploadedBlobName

Thumbnails List-
View DataBind

Assign
Thumbnails List-
View DataSource

GetPhotoGallery-
Container().

CreateBlob(blob)

CreateOnceCon-
tainerAndQueue()

Method Write Error
Message to Log

Create “photogal-
lery” BlobContainer

and “thumbnail-
maker” Queue

Create “photogal-
lery” BlobContainer

and “thumbnail-
maker” Queue

Test
CreateContainer()
and CreateQueue()

Methods
GetThumbnail-

MakerQueue().Put
Message(new Mes-
sage(props.Name))

New
Message

Created?

Created?

!IsPostback or
refreshData

IsThumb-
nail Ready

!IsPostback

Message
= null

Failure

Done

submitButton_
Click EventHandler

Assign
BlobProperties blob

refreshData =
true

refreshData =
false

File
Path

Browse

“thumbnailmaker”
queue.GetMessage

CreateThumbnail()
Graphic Method

thumbnails
BlobContents

Blob Properties
DeleteMessage()

Sleep 1
Second

Sleep 1
Second

Yes

Yes

Yes

Yes

Yes

No
No

No

No

Yes

No PostBack

Added to
“thumbnailmaker”

Queue

JavaScript

PostBack

Figure 8-5: Flow Diagram for the Thumbnails_WebRole and Thumbnails_WorkerRole projects in the
Thumbnails2.sln solution.

232

Chapter 8: Messaging with Azure Queues

Figure 8-6: A GridView added to the Thumbnails2 page to display a list of thumbnail blobs and enable
deletion of thumbnail and source image blobs.

Listing 8-27: HTTP request and response messages generated by WorkerRole polling

protected void gvBlobs_RowDeleting(object sender,
System.Web.UI.WebControls.GridViewDeleteEventArgs e)

{
// Delete the specified thumbnail blob
int index = e.RowIndex;
if (index < gvBlobs.DataKeys.Count)
{

// Keep a minimun of three thumbnails
if (gvBlobs.DataKeys.Count > 3)
{

// Delete the thumbnail
string blobName = (string)gvBlobs.DataKeys[index].Value;
BlobContainer blobContainer = GetPhotoGalleryContainer();
if (blobContainer.DoesBlobExist(blobName))
{

blobContainer.DeleteBlob(blobName);
RoleManager.WriteToLog("Information",

Continued

233

Part II: Taking Advantage of Cloud Services in the Enterprise

Listing 8-27: HTTP request and response messages generated by WorkerRole polling
(continued)

string.Format("Deleted ‘{0}’", blobName));
}
else

RoleManager.WriteToLog("Information",
string.Format("Failed to delete ‘{0}’", blobName));

// Delete the original image blob (without thumbnails/
// prefix)
blobName = blobName.Substring(11);
if (blobContainer.DoesBlobExist(blobName))
{

blobContainer.DeleteBlob(blobName);
RoleManager.WriteToLog("Information",

string.Format("Deleted ‘{0}’", blobName));
}
else

RoleManager.WriteToLog("Information",
string.Format("Failed to delete ‘{0}’", blobName));

// Set the refreshData flag
refreshData = true;

}
else

statusMessage.Text = "Please leave at least 3 thumbnails
for other users.";

}
}

A live demonstration of the PhotoGallery.sln project is at http://oakleaf5.cloudapp.net/.

Summary
Azure Queues provide a reliable message delivery system to support dispatching asynchronous comput-
ing work. Queues are the only method offered by the Azure Storage Services for persisting interactive
instructions with Azure Services; tables and blobs only persist state.

A single StorageAccount accommodates an unlimited number of MessageQueues and each MessageQueue
can persist an unlimited number of Messages, which can store up to 8KB of content. You can store
Messages larger than 8KB in blobs and substitute the blobs’ Name property values for the content. Queue
programming semantics ensure that a message can be processed at least once. Azure Queues have a REST
API, which enables applications written in any language access the queue over the Internet or intranets
with HTTP or HTTPS request and response messages. The StorageClient library lets developers treat
Azure Queues as .NET objects.

234

Chapter 8: Messaging with Azure Queues

The Windows Azure SDK (March 2009 CTP) includes a sample application, Thumbnails.sln, which
demonstrates how to program interaction between a WebRole, which provides a user interface for cre-
ating a collection of thumbnail images from source graphic files from users’ local file system, and a
WorkerRole, which handles the computing process to generate a thumbnail image of 124 px maximum
width or height. A single BlobContainer persists source and thumbnail files in blobs having related
names.

Real-world tests of Thumbnails.sln demonstrate that its design would result in extremely high bandwidth
consumption in even moderately scaled environments. Reducing the bandwidth by disabling ViewState
of the ListView that stores the thumbnail images doesn’t reduce the bandwidth sufficiently to produce
an economically viable service.

235

Part III

Tackling Advanced Azure
Services Techniques

Chapter 9: Authenticating Users with .NET Access Control Services

Chapter 10: Interconnecting Services with the .NET Service Bus

Chapter 11: Exploring .NET Service Bus Queues and Routers

Authenticating Users with
.NET Access Control

Services

.NET Access Control Services (ACS) is one of three .NET Services for Windows Azure Platform.
ACS is a customizable, cloud-based Security Token Service (STS) that supports user authentication
by any of the following credentials:

❑ User (solution) name and password

❑ Windows Live ID

❑ Windows CardSpace

❑ X.509 certificate

❑ Security Assertion Markup Language (SAML) tokens issued by third-party STSs

Wikipedia describes SAML as ‘‘an XML-based standard for exchanging authentication and authorization
data between security domains, that is, between an identity provider (a producer of assertions) and
a service provider (a consumer of assertions).’’ SAML ‘‘is a product of the OASIS Security Services
Technical Committee [and] has become the definitive standard underlying many web Single Sign-On
solutions in the enterprise identity management problem space.’’ Additional information about the SAML
Technical Committee (TC) is at http://bit.ly/Xsv31,www.oasis-open.org/committees/tc
home.php?wg abbrev=security. The saml.xml.org site (http://saml.xml.org/) is the primary
source of SAML resources for developers.

ACS is an STS infrastructure hosted in Windows Azure that authenticates credentials and issues
tokens. Each .NET Services solution has a private, isolated STS at its disposal. ACS also provides
a role-based authorization framework that relies on claims-based rules. Integrating ACS with an
Azure WebRole or other .NET applications requires installing the Windows Identity Foundation
(WIF, formerly ‘‘Geneva’’ Framework), which was available in a Beta 2 version when this book was

Part III: Tackling Advanced Azure Services Techniques

written. WIF implements the System.IdentityModel namespace to simplify claims-based applications.
It builds on the Windows Communication Foundation (WCF) infrastructure to implement WS-Trust
and comes with an HttpModule called the WS-Federation Authentication Module (FAM) that simplifies
implementing WS-Federation in browser-based applications.

As mentioned later in this chapter, the System.IdentityModel namespace wasn’t compatible with
Windows Azure when this book was written.

WS-Federation is the web services (WS-*) specification for federating identities from a variety of sources
(domains) to simplify sharing services from secure web sites and SOAP-based services. This chapter
demonstrates how features of Microsoft’s current WS-Federation implementation are used by WCF-
based SOAP clients and web services. WS-Federation also defines syntax for expressing the WS-Trust
protocol and WS-Federation extensions in a browser-based environment. This syntax provides a common
approach to federating identity operations for web services and browser-based applications.

Although ACS currently has a credentials store for name/password, Windows CardSpace v1 self-issued
information cards, and X.509 certificates, the .NET Services team has no plans for ACS to be an Identity
Provider in the long term. ACS will use Windows Live Identity Services (WLID) in the future.

Sections later in this chapter describe how to create federated CardSpace credentials for testing with ACS.
ACS has built-in support for Windows Live ID (WLID) credentials.

Creating a .NET Services Solution
You must create a .NET Services solution before you can take advantage of ACS and ‘‘Geneva’’
Framework features. A .NET Services solution provisions all three .NET Services — ACS, ServiceBus,
and Workflow Services other than ACS are the subject of later chapters. .NET Services gained a
RESTful API with HTTP/HTTPS request and response messages for most operations in the March 2009
Community Technical Preview (CTP).

To provision a set of .NET Services go to http://portal.ex.azure.microsoft.com/ and accept the
Terms of Use to open the My Subscriptions page. Click the Add Solution link to open the Create Solution
page, type a unique name for the solution (similar to oakleaf-acs for this example) in the text box, click
the Validate Name link to test for uniqueness (see Figure 9-1), and click OK to add the solution to the My
Subscriptions page and start the provisioning process (see Figure 9-2).

.NET Service solution names become part of a DNS name and thus must follow DNS naming rules.
Solution names must start with a letter followed by a combination of letters and numbers, but starting
with xn, Xn, xN, or XN prefixes is prohibited. Dashes (-) are the only special character permitted. Solution
names must be unique, so you can’t create an oakleaf-acs solution; substitute your own solution name
to prevent conflicts.

The empty space in the Status column between Access Control Service and Service Bus Registry will
be filled with a Workflow Service link when Workflow Services are restored by the release of .NET
Framework 4. Workflow Services were temporarily removed from the .NET Services July 2009 CTP and
later.

Click the Access Control Service link to open the Manage the Microsoft .NET Access Control page (see
Figure 9-3).

240

Chapter 9: Authenticating Users with .NET Access Control Services

Figure 9-1: Assign a unique name for the .NET Services solution.

Figure 9-2: The Create Solution page displays a row for each service solution you add.

241

Part III: Tackling Advanced Azure Services Techniques

Figure 9-3: After a short time, the Windows Azure Platform provisions the .NET Solution you specified and
opens its management page.

Installing the .NET Services SDK,
and Other Tools

Downloading and installing the .NET Services SDK is required to enable ACS samples that use the
ServiceBus or Workflow services.

The Azure Management Tools and the Azure Service Training Kit are optional but you’ll find they have
content that will help you learn more about identity management for .NET Services and Azure web
applications.

.NET Services SDK
The latest version of the .NET Services SDK was the July 2009 Community Technical Preview (CTP)
when this book was written. The SDK includes the Microsoft.ServiceBus assembly, C# and VB sample

242

Chapter 9: Authenticating Users with .NET Access Control Services

code, and preliminary ACS documentation. You can install the latest version of the SDK, which creates a
program group, from http://bit.ly/bL2xY, http://go.microsoft.com/fwlink/?LinkID=129448. The
.NET Services Development Center is at http://bit.ly/bhAKT, http://msdn.microsoft.com/en-us/
azure/netservices.aspx and the .NET Services – Technical Discussions forum is at
http://bit.ly/2T98wb, http://social.msdn.microsoft.com/Forums/en-US/netservices/threads.

Java and Ruby versions of the .NET Services SDK are available at http://bit.ly/ZjLwx,
www.schakra.com/stuff-we-do/jdotnetservices.html and http://bit.ly/Ms1YE,
www.dotnetservicesruby.com/, respectively.

Azure Management Tools (Optional)
The Azure Services Management Tools provide a Microsoft Management Console (MMC) SnapIn and
Windows PowerShell cmdlets that enable users to configure and manage .NET Access Control Services,
and the .NET Workflow Service. These tools let you view and change .NET Access Control Scopes and
Rules in an MMC GUI, rather than pages of the .NET Services portal, and deploy and view workflows.
You can download the current Azure Services Management Tools from the MSDN Code Gallery at
http://bit.ly/gKlP0, http://code.msdn.microsoft.com/AzureManagementTools.

Vittorio Bertocci’s January 2008 blog post, ‘‘A visual tour of the .NET Access Control service via Azure
Services Management Console’’ (http://bit.ly/2LV411, http://blogs.msdn.com/vbertocci/
archive/2009/01/08/a-visual-tour-of-the-net-access-control-service-via-azure-
services-management-console.aspx) shows you how to substitute the snap-in’s GUI for the ardu-
ous process of configuring scopes and roles with the Azure portal’s Manage the Microsoft .NET Access
Control Service pages.

Azure Services Training Kit (Optional)
The Azure Services Training Kit includes hands-on labs (HOLs), PowerPoint presentations, and demon-
strations that are designed to help you learn how to use the Windows Azure Platform. An IntroAc-
cessControlService HOL, as well as IntroNetServices and IndentityAccessControlServices presentations
are applicable to this chapter’s content. You can download the latest Azure Services Training Kit from
http://bit.ly/DAZKt, http://go.microsoft.com/fwlink/?LinkID=130354.

Microsoft ‘‘Geneva’’ Beta 2 (Verify Compatibility Before Installing)
The Beta 2 version of Microsoft ‘‘Geneva’’ was released in June 2009 and is available for download
from http://bit.ly/4xUgjs, www.microsoft.com/downloads/details.aspx?displaylang=en&
FamilyID=118c3588–9070–426a-b655–6cec0a92c10b. ‘‘Geneva’’ consists of the following three
components:

❑ Windows Identity Foundation (‘‘Geneva’’ Framework) for building .NET applications that use
claims to make user access decisions

❑ Active Directory Federation Services (‘‘Geneva’’ Server) security token service (STS) for issuing
and transforming claims, enabling federations, and managing user access

❑ Windows CardSpace (Windows CardSpace ‘‘Geneva’’) for helping users navigate access
decisions and for developers to build customer authentication experiences for users

243

Part III: Tackling Advanced Azure Services Techniques

You can download the preceding components, as well as ‘‘Geneva’’ whitepapers and overviews from
http://bit.ly/qseXe, https://connect.microsoft.com/site/sitehome.aspx?SiteID=642. The
Claims Based Access Platform (CBA), Code-Named ‘‘Geneva’’ forum is at http://bit.ly/ADmws,
http://social.msdn.microsoft.com/Forums/en-US/Geneva/threads/ and the infrequently updated
MSDN ‘‘Geneva’’ Team blog is at http://bit.ly/xcK6h, http://blogs.msdn.com/card/default.aspx.
Channel 9’s ‘‘The Id Element’’ show at http://bit.ly/14hig7, http://channel9.msdn.com/identity/
offers interviews with Microsoft product group members and others about identity, ACS, and
‘‘Geneva.’’

Microsoft ‘‘Geneva’’ Beta 1 was incompatible with the Windows Azure Platform (March 2009
CTP) and WebRole applications using the ‘‘Geneva’’ Framework would not run in the
Azure Production Fabric. For more information on this issue, see Vittorio Bertocci’s,
‘‘Claims and Cloud: Pardon our Dust’’ blog post of April 1, 2009 (http://bit.ly/CTUf4,
http://blogs.msdn.com/vbertocci/archive/2009/04/01/claims-and-cloud-pardon-
our-dust.aspx).

A Microsoft technical support representative reported in the Windows Azure Forum that
Windows CardSpace ‘‘Geneva’’ is not compatible with the Windows CardSpace applet included
with Windows Vista and Windows 7. Uninstalling the ‘‘Geneva’’ Framework reverts to the original
Windows CardSpace applet. See the ‘‘Windows Cardspace ‘‘Geneva’’ (Beta 2) is Incompatible
with Windows Cardspace (Default) Control Panel Applet’’ bug report at http://bit.ly/e408T,
https://connect.microsoft.com/feedback/ViewFeedback.aspx?FeedbackID=453987&
SiteID=642. When this book was written the preceding warnings had not been retracted for ‘‘Geneva’’
Beta 2.

Microsoft announced a change to the names of ‘‘Geneva’’ components on July 13, 2009: ‘‘Geneva’’
Server is now Active Directory Federation Services (ADFS), ‘‘Geneva’’ Framework is Windows Identity
Foundation, and Windows CardSpace ‘‘Geneva’’ is Windows CardSpace.

Creating CardSpace Credentials at
FederatedIdentity.net

Microsoft’s Identity Lab (Identity Protocols Security Token Service, ipsts) is a set of hosted security
token services to support testing of Identity Protocols. The goal of the lab is to provide a set of
custom test endpoints to evaluate the interoperability of Identity Protocols, including Microsoft
CardSpace, among multiple partners and vendors. Microsoft promotes its CardSpace credentials
as an industry-standard, SAML v1.1-compliant source of identity information. Vista was the
first Windows version to include a CardSpace Control Panel applet. You use CardSpace creden-
tials to test federation of third-party CardSpace and LiveID identity services in later sections of
this chapter.

You can learn more about the Windows CardSpace protocol from its main MSDN page
(http://bit.ly/nxmph, http://msdn.microsoft.com/en-us/windows/aa663320.aspx), the
‘‘Geneva’’ Team Blog (http://bit.ly/1a0YwJ, http://blogs.msdn.com/card/) and the Windows

244

Chapter 9: Authenticating Users with .NET Access Control Services

CardSpace (’InfoCard’) Forum (http://bit.ly/12MnJr, http://social.msdn.microsoft.com/
forums/en-US/windowscardspace/threads/).

To obtain a managed CardSpace information card, browse to the Microsoft Identity Lab’s Microsoft
Identity Interop Sts Logon page (http://bit.ly/3oJeO, https://ipsts.federatedidentity.net/
MgmtConsole/Login.aspx) and click the Sign Up button to open the Registration page. Type a ficti-
tious name in the UserName text box, a password in the Password and Confirm Password text boxes,
and mark the Accept Terms of Use check box (see Figure 9-4).

Figure 9-4: The Identity Lab’s Registration page warns you not to disclose
confidential information in this CardSpace credential.

Click Submit to open the Claims Configuration page. Accept the default (marked) setting for the By
Default, Release the Following Claims to Any Relying Party check box. These are the minimum claims

245

Part III: Tackling Advanced Azure Services Techniques

required by most relying parties. Type fictitious names in the First Name and LastName text boxes
and accept the referring party’s Email Address (UserName@ipsts.federatedidentity.net), as shown in
Figure 9-5.

Figure 9-5: The Claims Configuration Page generates the referring party’s
e-mail address for you.

Click Continue to open the Edit Profile Information/Manage Relying Party Policies page (see Figure 9-6.)
The Edit Profile Information link opens a page that lets you add to and edit the information you entered

246

Chapter 9: Authenticating Users with .NET Access Control Services

previously; the Manage Relying Party Policies page enables selecting the profile information you release
to relying parties.

Figure 9-6: The Edit Profile Information/Manage Relying Party Policies page
has links for editing and downloading CardSpace credentials.

Click the Edit Profile Information Link to open an expanded version of the Claims Configuration page.
Add fictitious information to the First Name and Last Name text boxes, accept the default Email Address,
and type Domain Users in the Group text box. Mark their selection for your default profile by marking
the four associated check boxes (see Figure 9-7).

247

Part III: Tackling Advanced Azure Services Techniques

Figure 9-7: The Claims Configuration page with default entries for use with
the Azure Services Training Kit’s Federation.sln HOL.

The following table relates the Claims Configurati on page’s friendly names to SOAP WS-*
identity/claims URIs. The page uses friendly names to avoid disclosing information about your
personal or your company’s identity.

Friendly
Name

Claim Type URI

Site Specific ID ’http://schemas.xmlsoap.org/ws/2005/05/identity/claims/

privatepersonalidentifier’

First Name ’http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname’

248

Chapter 9: Authenticating Users with .NET Access Control Services

Friendly
Name

Claim Type URI

Last Name ’http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname’

Email Address ’http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress’

Date Of Birth ’http://schemas.xmlsoap.org/ws/2005/05/identity/claims/dateofbirth’

City ’http://schemas.xmlsoap.org/ws/2005/05/identity/claims/locality’

State ’http://schemas.xmlsoap.org/ws/2005/05/identity/claims/stateorprovince’

Country ’http://schemas.xmlsoap.org/ws/2005/05/identity/claims/country’

Phone ’http://schemas.xmlsoap.org/ws/2005/05/identity/claims/mobilephone’

Group ’http://schemas.xmlsoap.org/claims/Group’

Role ’http://ipsts.federatedidentity.net/role’

Membership
Level

’http://ipsts.federatedidentity.net/membershiplevel’

Click Submit to return to the Edit Profile Information/Manage Relying Party Policies page, click Save
to return to the Manage Relying Party Policies, and click the Manage Relying Party Policies link to open
the Relying Parties page, which contains Edit/View buttons for HTTPS and HTTP policies. Click the
EditView button for the unsecured http://relyingparty.federatedidentity.net party to open the
Edit a Policy page. Mark the check boxes for the profile items you want to release, click Browse, and
navigate to the public key file for ACS that’s included in the Azure Services Toolkit (see Figure 9-8,
which shows only the first five items).

The certificate is located at \AzureServicesKit\Labs\IntroAccessControlService\Assets\
accesscontrol.windows.net.cer.

Click Save to save your changes and return to the Edit Profile Information/Manage Relying Party Policies
page. Click the Download Your Username/Password card button to open the File Download dialog
for the InformationCard.crd file, and click Yes when asked whether you want to save the card with
Windows CardSpace on your local computer. This adds the CardSpace Information Card credential to
the Windows CardSpace Control Panel tool (see Figure 9-9).

Repeat the preceding step for the Certificate-Backed card, which requires you to click a link to generate
and download the FederatedIdentity.pfx certificate and click Open to start the Certificate Import Wiz-
ard. Click Next, accept the default File Name, click Next, type 1234 as the password, and click Next to
download and add the certificate-backed card to the Windows CardSpace Control Panel tool.

Exploring the HTTP Request and Response Messages
of the CardSpace Information Card

The http://ipsts.federatedidentity.net/ URI’s Edit Profile Information/Manage Relying Party
Policies page’s Download Your Username/Password card button sends the HTTP request message
shown in Listing 9–1 to your computer, which adds an item to the LocalCardStore1.5001.crds credential

249

Part III: Tackling Advanced Azure Services Techniques

store located in the \Users\UserName.DomainName\AppData\Local\Microsoft\CardspaceV2 folder,
which opens with the Microsoft IdentityManager (also known as the Windows CardSpace applet).
Listing 9–1 shows the content (with binary data truncated) of the request message for the rogerj Identity
Card with the three claims shown in Figure 9-8.

Figure 9-8: Creating a policy for the sample Federated Identity Http Sample
Relying Party.

250

Chapter 9: Authenticating Users with .NET Access Control Services

Figure 9-9: Vista and later Windows operating systems have a Windows CardSpace applet for
selecting CardSpace credentials to use with applications that support this identity protocol.

Listing 9-1: HTTP request message for creating the CardSpace credentials for the
policy of Figure 9-8

POST /MgmtConsole/UserProfile.aspx HTTP/1.1
Accept: image/gif, image/jpeg, image/pjpeg, application/x-ms-
application, application/vnd.ms-xpsdocument,
application/xaml+xml, application/x-ms-xbap,
application/vnd.ms-excel, application/vnd.ms-powerpoint,
application/x-shockwave-flash, application/x-silverlight-2-b2,
application/x-silverlight, application/msword, */*
Referer:
https://ipsts.federatedidentity.net/MgmtConsole/UserProfile.aspx
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0;

Continued

251

Part III: Tackling Advanced Azure Services Techniques

Listing 9-1: HTTP request message for creating the CardSpace credentials for the
policy of Figure 9-8 (continued)

Trident/4.0; GTB6; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0;
.NET CLR 3.5.21022; .NET CLR 3.5.30428; .NET CLR 3.5.30729;
.NET CLR 3.0.30618; MS-RTC LM 8; InfoPath.2;
OfficeLiveConnector.1.3; OfficeLivePatch.1.3)
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
Host: ipsts.federatedidentity.net
Content-Length: 399
Connection: Keep-Alive
Cache-Control: no-cache
Cookie: ASP.NET_SessionId=c3qfhfjsvznt1g55fiz0kamd;
.ASPXAUTH=C5AA499D1D055CE8072092ECEDA418E4598C89C7B05DB127720
8B472E254623DF2FCD982F7084A0B4E8B4279763CBBF95207A54C958593B8
47D8C12E5BAFA0B03C17657ACCCE5ED47FA7FBBE05C7AB7C

EVENTTARGET=& EVENTARGUMENT=& VIEWSTATE=%2FwEPDwUKMTUzMjgw
MDIxNWQYAQUeX19Db250cm9sc1JlcXVpcmVQb3N0QmFja0tleV9fFgQFEkxvZ2l
uU3RhdHVzMSRjdGwwMQUSTG9naW5TdGF0dXMxJGN0bDAzBQVjdGwwNwUMSW1hZ2
VCdXR0b24yK3zW1NJzQ9rHBuQIlifR5JFLlxM%3D& PREVIOUSPAGE=4NPldbO
FJaNjq31q4SSNo1oBM5xQci6E8YDLyrH2srk1& EVENTVALIDATION=%2FwEWB
ALGkJvgBgK%2B3vvOCQKkwImNCwLSwtXkAsHGA9QzJH4lHeSdXMPXSnU%2F9GGE
&ctl07.x=34&ctl07.y=18

As of the March 2009 CTP, ACS and related identity services had RESTful APIs. Listing 9–2 is the HTTP
response message returned by the Windows CardSpace applet when you elect to store the Information
Card or when interchanging credentials to request user (Requester) access to an application (Relying
Party) that uses ACS for authorization.

Listing 9-2: HTTP response message containing the CardSpace credentials created
by Listing 9-1 with items shown in Figure 9-8 highlighted and encrypted content
truncated

HTTP/1.1 200 OK
Cache-Control: private
Content-Type: application/x-informationCardFile
Server: Microsoft-IIS/7.0
Content-Disposition: attachment; filename=InformationCard.crd
X-AspNet-Version: 2.0.50727
X-Powered-By: ASP.NET
Date: Mon, 27 Apr 2009 21:47:57 GMT
Content-Length: 26838

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<ds:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<ds:Reference URI="#_Object_InformationCard">

252

Chapter 9: Authenticating Users with .NET Access Control Services

<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>bL+zolLfpZdzmfG0C2DbMiwhzxs=</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>hSb4hICvKaHlYKfkcYhrcvWQyblOhayFijcOFtXjVgQ6Dfat
PM40bx2h2X/KW4W7zyZs
..
TJWfzTO59HSymfCw5jdzZ1IO3I58d3qwXU/lF3BWLD2IABQSWGW78o/Lc95GY300
gIzWdQTwbOToRLdZoIo=

</ds:SignatureValue>
<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
<X509Data>

<X509Certificate>
MIIF+jCCBOKgAwIBAgIKfaH88AAFAADqAjANBgkqhkiG9w0BAQ
izETMBEGCgm
..
jkwdWg1zNXz+xdq8RjFg6kWtK2tzVqs+T1+R26ciJRqMvuowqUvwSpng
OUHbwVoc7nbVQ==

</X509Certificate>
</X509Data>

</KeyInfo>
<ds:Object Id="_Object_InformationCard">
<i:InformationCard xml:lang="en"

xmlns:i="http://schemas.xmlsoap.org/ws/2005/05/identity">
<i:InformationCardReference>

<i:CardId>
urn:uuid:559d0b9e-05f2–4dac-ac31-c572fb456af4

</i:CardId>
<i:CardVersion>2</i:CardVersion></i:InformationCardReference>
<i:CardName>ipsts.federatedidentity.net</i:CardName>
<i:CardImage MimeType="image/jpeg">
/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAs
LDBkSEw8UHRofHh0aHBwgJ
..
FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//
2Q==

</i:CardImage>
<i:Issuer>http://ipsts.federatedidentity.net</i:Issuer>
<i:TimeIssued>2009–04–27T21:47:57.837Z</i:TimeIssued>
<i:TimeExpires>2009–05–04T21:47:57.837Z</i:TimeExpires>
<i:TokenServiceList>
<i:TokenService>

<EndpointReference
xmlns="http://www.w3.org/2005/08/addressing">

<Address>
https://ipsts.federatedidentity.net/SecurityTokenService/

InteropSts.svc/Sts
</Address>
<Metadata>
<Metadata xmlns="http://schemas.xmlsoap.org/ws/2004/09/mex"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Continued

253

Part III: Tackling Advanced Azure Services Techniques

Listing 9-2: HTTP response message containing the CardSpace credentials created by
Listing 9-1 with items shown in Figure 9-8 highlighted and encrypted content
truncated (continued)

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsx="http://schemas.xmlsoap.org/ws/2004/09/mex">
<wsx:MetadataSection
Dialect="http://schemas.xmlsoap.org/ws/2004/09/mex"
xmlns="">
<wsx:MetadataReference>
<Address xmlns="http://www.w3.org/2005/08/addressing">

https://ipsts.federatedidentity.net/
SecurityTokenService/InteropSts.svc/mex

</Address>
</wsx:MetadataReference>

</wsx:MetadataSection>
</Metadata>

</Metadata>
<Identity xmlns="http://schemas.xmlsoap.org/ws/

2006/02/addressingidentity">
<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<X509Data>
<X509Certificate>

KfaH88AAFAADqAjANBgkqhkiG9w0BAQUFADCBizETMBEGCgmSJ
..
kWtK2tzVqs+T1+R26ciJRqMvuowqUvwSpngOUHbwVoc7nbVQ==

</X509Certificate>
</X509Data>

</KeyInfo>
</Identity>

</EndpointReference>
<i:UserCredential>

<i:UsernamePasswordCredential>
<i:Username>rogerj</i:Username>

</i:UsernamePasswordCredential>
</i:UserCredential>

</i:TokenService>
</i:TokenServiceList>
<i:SupportedTokenTypeList>

<t:TokenType xmlns:t="http://schemas.xmlsoap.org/ws/
2005/02/trust">

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLV1.1

</t:TokenType>
<t:TokenType xmlns:t="http://schemas.xmlsoap.org/ws/

2005/02/trust">
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLV2.0

</t:TokenType>

254

Chapter 9: Authenticating Users with .NET Access Control Services

<t:TokenType xmlns:t="http://schemas.xmlsoap.org/ws/
2005/02/trust">
http://schemas.microsoft.com/ws/2006/05/identitymodel/

tokens/Kerberos
</t:TokenType>
<t:TokenType
xmlns:t="http://schemas.xmlsoap.org/ws/2005/02/trust">
http://schemas.microsoft.com/ws/

2006/05/identitymodel/tokens/Rsa
</t:TokenType>
<t:TokenType xmlns:t="http://schemas.xmlsoap.org/ws/
2005/02/trust">
http://schemas.microsoft.com/2008/08/sessiontoken

</t:TokenType>
<t:TokenType xmlns:t="http://schemas.xmlsoap.org/ws/
2005/02/trust">
http://schemas.microsoft.com/ws/

2006/05/identitymodel/tokens/UserName
</t:TokenType>
<t:TokenType xmlns:t="http://schemas.xmlsoap.org/ws/
2005/02/trust">
http://schemas.microsoft.com/ws/2006/05/

identitymodel/tokens/X509Certificate
</t:TokenType>
<t:TokenType xmlns:t="http://schemas.xmlsoap.org/ws/
2005/02/trust">
urn:oasis:names:tc:SAML:1.0:assertion

</t:TokenType>
</i:SupportedTokenTypeList>

<i:SupportedClaimTypeList>
<i:SupportedClaimType
Uri="http://schemas.xmlsoap.org/ws/

2005/05/identity/claims/givenname">
<i:DisplayTag>First Name</i:DisplayTag>
<i:Description>

A person’s name which is not their surname nor middle name
</i:Description>

</i:SupportedClaimType>
<i:SupportedClaimType
Uri="http://schemas.xmlsoap.org/ws/

2005/05/identity/claims/surname">
<i:DisplayTag>Last Name</i:DisplayTag>
<i:Description>The family name of a person</i:Description>

</i:SupportedClaimType>
<i:SupportedClaimType
Uri="http://schemas.xmlsoap.org/ws/

2005/05/identity/claims/emailaddress">

Continued

255

Part III: Tackling Advanced Azure Services Techniques

Listing 9-2: HTTP response message containing the CardSpace credentials created by
Listing 9-1 with items shown in Figure 9-8 highlighted and encrypted content
truncated (continued)

<i:DisplayTag>Email Address</i:DisplayTag>
<i:Description>

an electronic mailbox address of a person
</i:Description>

</i:SupportedClaimType>
<i:SupportedClaimType
Uri="http://schemas.xmlsoap.org/ws/

2005/05/identity/claims/dateofbirth">
<i:DisplayTag>Date Of Birth</i:DisplayTag>
<i:Description>The date of birth of a person</i:Description>

</i:SupportedClaimType><i:SupportedClaimType
Uri="http://schemas.xmlsoap.org/ws/

2005/05/identity/claims/locality">
<i:DisplayTag>City</i:DisplayTag>
<i:Description>

The name of a locality, such as a city, county or
other geographic region

</i:Description>
</i:SupportedClaimType>
<i:SupportedClaimType
Uri="http://schemas.xmlsoap.org/ws/

2005/05/identity/claims/stateorprovince">
<i:DisplayTag>State</i:DisplayTag>
<i:Description>

Abbreviation for state or province name of a physical address
</i:Description>

</i:SupportedClaimType>
<i:SupportedClaimType
Uri="http://schemas.xmlsoap.org/ws/

2005/05/identity/claims/country">
<i:DisplayTag>Country</i:DisplayTag>
<i:Description>Country of a physical address</i:Description>

</i:SupportedClaimType>
<i:SupportedClaimType
Uri="http://schemas.xmlsoap.org/ws/

2005/05/identity/claims/mobilephone">
<i:DisplayTag>Phone</i:DisplayTag>
<i:Description>

Mobile telephone number of a person
</i:Description>

</i:SupportedClaimType>
<i:SupportedClaimType

Uri="http://schemas.xmlsoap.org/ws/
2005/05/identity/claims/privatepersonalidentifier">

<i:DisplayTag>Site ID</i:DisplayTag>
<i:Description>A private personal identifier</i:Description>

</i:SupportedClaimType>
<i:SupportedClaimType Uri="http://ipsts.federatedidentity.net/

membershiplevel">
<i:DisplayTag>Membership Level</i:DisplayTag>

256

Chapter 9: Authenticating Users with .NET Access Control Services

</i:SupportedClaimType>
<i:SupportedClaimType

Uri="http://ipsts.federatedidentity.net/role">
<i:DisplayTag>Role</i:DisplayTag>

</i:SupportedClaimType>
<i:SupportedClaimType
Uri="http://ipsts.federatedidentity.net/group">
<i:DisplayTag>Group</i:DisplayTag>

</i:SupportedClaimType>

<i:SupportedClaimType
Uri="http://schemas.xmlsoap.org/ws/

2005/05/identity/claims/name">
<i:DisplayTag>User ID</i:DisplayTag>
<i:Description>Name</i:Description>

</i:SupportedClaimType>
</i:SupportedClaimTypeList>
<i:RequireAppliesTo Optional="false"/>
<i:PrivacyNotice Version="1">

http://www.federatedidentity.net/Privacy.txt
</i:PrivacyNotice>
<ic07:IssuerInformation

xmlns:ic07="http://schemas.xmlsoap.org/ws/
2007/01/identity">

<ic07:IssuerInformationEntry>
<ic07:EntryName>Contact Us</ic07:EntryName>
<ic07:EntryValue>FedId@microsoft.com</ic07:EntryValue>

</ic07:IssuerInformationEntry>
<ic07:IssuerInformationEntry>
<ic07:EntryName>Web Page</ic07:EntryName>
<ic07:EntryValue>

www.FederatedIdentity.net
</ic07:EntryValue>

</ic07:IssuerInformationEntry>
</ic07:IssuerInformation>
<ic07:RequireStrongRecipientIdentity

xmlns:ic07="http://schemas.xmlsoap.org/ws/2007/01/identity"/>
</i:InformationCard>

</ds:Object>
</ds:Signature>

Non-sensitive information, such as supported claim types, appears in clear text. The highlighted lines in
Listing 9–2 include all custom claim types. Data, such as claim values, is encrypted; encrypted data is
truncated for brevity.

Standardizing Information Card Terminology
The http://bit.ly/119HbZ, http://schemas.xmlsoap.org/ws/2005/05/identity/ and
http://bit.ly/hBfz6, http://docs.oasis-open.org/imi/ns/identity-200810 URI redirect
to Oasis’s Identity Metasystem Interoperability (IMI) 1.0 namespace (http://bit.ly/hBfz6,
http://docs.oasis-open.org/imi/ns/identity-200810), which also contains a directory
of links to related resources using the Resource Directory Description Language (RDDL) 2.0

257

Part III: Tackling Advanced Azure Services Techniques

(http://bit.ly/fPzsL, www.openhealth.org/RDDL/20040118/rddl-20040118.html). The IMI 1.0
specification is related to the WS-Trust, WS-SecurityPolicy, and WS-Addressing specifications.

The IMI 1.0 namespace’s Committee Draft 02 of February 19, 2009 defines the terms related to the Infor-
mation Card Model and Information Card listed in the following table.

Term Definition

Information Card Model Refers to the use of Information Cards containing metadata for
obtaining Digital Identity claims from Identity Providers and then
conveying them to Relying Parties under user control.

Information Card Provides a visual representation of a Digital Identity for the end user.
Information Cards contain a reference to an IP/STS that issues Secu-
rity Tokens containing the Claims for that Digital Identity.

Digital Identity A set of Claims made by one party about another party.

Claim A piece of information about a Subject that an Identity Provider
asserts about that Subject.

Subject An individual or entity about whom claims are made by an Identity
Provider.

Service Requester Software acting on behalf of a party who wants to obtain a service
through a digital network.

Relying Party (RP) A network entity providing the desired service, and relying upon
Digital Identity.

Identity Provider (IP) A network entity providing the Digital Identity claims used by a
Relying Party.

Security Token Service A WS-Trust endpoint.

Identity Provider Security
Token Service (IP/STS)

The Security Token Service run by an Identity Provider to issue
tokens.

Relying Party Security Token
Service (RP/STS

A Security Token Service run by a Relying Party to accept and issue
tokens.

Identity Selector (IS) A software component available to the Service Requester through
which the user controls and dispatches her Digital Identities (for
example, CardSpace ‘‘Geneva’’).

Trust Identity A verifiable claim about a principal (for example, name, identity, key,
group, privilege, capability, and so on).

Security Token Represents a collection of claims.

Signed Security Token A security token that is asserted and cryptographically endorsed by a
specific authority (for example an X.509 certificate, a Kerberos ticket,
or a self-issued Information Card).

Unsigned Security Token A security token that is not cryptographically endorsed by a specific
authority (for example, a security token backed by shared secrets such
as usernames and passwords).

258

Chapter 9: Authenticating Users with .NET Access Control Services

Term Definition

Proof-of-Possession Data that is used in a proof process to demonstrate the sender’s
knowledge of information that SHOULD only be known to the
claiming sender of a security token.

Integrity The process by which it is guaranteed that information is not modi-
fied in transit.

Confidentiality The process by which data is protected such that only authorized
actors or security token owners can view the data.

Digest A cryptographic checksum of an octet stream.

Signature A cryptographic binding of a proof-of-possession and a digest. (This
covers both symmetric key-based and public key-based signatures;
consequently, non-repudiation is not always achieved.)

You’ll find most of these terms used throughout the rest of this chapter.

Using a Managed CardSpace Credential
with ACS

Figure 9-10 shows the seven primary interactions between Service Requesters, Access Control solutions
and Relying Parties when using managed CardSpace Information Cards issued by a third-party IP.

Your Access Control
Solution

(oakleaf-acs)

Your Application-
Relying Party

(Federation.Client)

User-Requester
(rogerj)

0. Trust Exchanged:
CardSpace Cards,

Certificates

 5. Send Token with Request

1. Define Access
Control Rules

3. Map Input Claims to
Output Claims based on

Access Control Rules

4. Return Token
(Output Claims from 3)

2. Send Token (Initial
Claims, e.g. Identity)

6. Check
Claims

Figure 9-10: The seven primary interactions between Service Requesters, Access Control
solutions and Relying Parties with managed CardSpacecredentials.

259

Part III: Tackling Advanced Azure Services Techniques

The ipsts.FederatedIdentity.net CardSpace Information Card you created and added to the local
Information Card store in the preceding section is the same as that needed by the Azure Services Train-
ing Kit’s IntroAccessControlServices HOL. This HOL includes the final version of the Federation.sln
solution in the \AzureServicesKit\Labs\IntroAccessControlServices\Ex01FederatedIdentity\end folder.
Federation.sln contains two simple ServiceBus projects: Client and Service; Service is the setup project.

See the earlier ‘‘Azure Services Training Kit (Optional)’’ section for details about downloading the
Training Kit. You don’t need to run the setup operations or add code snippets to the projects. The solution
in the . . .\end folder has all required source code.

Setting Up FederatedIdentity.net for Use with the
oakleaf-acs Solution

The following sections are based on instructions contained in the IntroAccessControlServices HOL. You
can access the HOL instructions in HTML format from \AzureServicesKit\Labs\IntroAccessControl-
Services\Lab.html\html\DocSet_Default.html, which contains links to HOL components in sequence.
The following two sections’ content is from Task 2 of ‘‘Exercise 1: Using Managed Cards with the .NET
Access Control Service.’’

Configuring FederatedIdentity.net as a Recognized Token Issuer
Federating IPs requires your ACS solution to trust each IP you don’t create yourself with the solution.
Configuring a third-party IP as a recognized token issuer is one of the elements of Step 0 in Figure 9-13.
Do the following to configure FederatedIdentity.net as a Recognized Issuer for the oakleaf-acs RP/STS
solution’s ServiceBus service:

1. Navigate to the Manage Solution page (http://bit.ly/1wGpH, https://accesscontrol.ex.
azure.microsoft.com/ for this example), sign in with the credential you used to create the
oakleaf-acs solution, navigate to and click the oakleaf-acs solution’s Access Control
Service link to open the Solution: oakleaf-acs page., click the Manage Scopes button to open
the Scopes page, and open the Solution Name list (see Figure 9-11).

Figure 9-11: Creating the http://oakleaf-acs.servicebus.windows.net scope.

260

Chapter 9: Authenticating Users with .NET Access Control Services

Scopes are named collections of ACS rules. Scopes make it simpler to manage rules for a
particular solution or project.

2. Select servicebus in the Solution Name list to add a new http://oakleaf-acs.servicebus.
windows.net scope for the ServiceBus project and click the Manage link to open the Scope
Management: Rules page (see Figure 9-12).

Figure 9-12: The management and rules page for the http://oakleaf-acs.servicebus.windows.net
scope.

3. Click the Issuers link to open the Scope Management: Issuers page and click the Add Issuer
button to open the Scope Management: Add Issuers page.

4. Type a friendly name, FederatedIdentityNet for this example, in the DisplayName text box,
and the URI for the issuer, https://ipsts.federatedidentity.net/MgmtConsole/, in the
Issuer URI and Certificate URL text boxes (see Figure 9-13).

You can’t add a new issuer with the same URI as an existing issuer. Thus, if you added
clear text and secure versions of the ipsts.federatedidentity.net IP to your Win-
dows CardSpace store, you must select and delete the unsecure (HTTP) version from the
store before continuing to step 5.

5. Click Save to recognize the new token issuer and return to the Scope Management: Issuers
page.

6. Click the Rules link to open the Scope Management: Rules page (see Figure 9-14).

Setting Up Claims Transformation Rules
ACS basic capability is as a claims transformation engine, which generates output claims from input
clams. An input claim is an assertion that must be matched for a rule to take effect. The format for an input
claim is ‘‘Must satisfy n of: ‘Type: Value (Issuer)’’’ where n is the number of specified input claims that
must be satisfied, Any or All. An output claim is an assertion made by the STS when a rule takes effect.
(Only one output claim can result from each rule.) The valid output claim is included in the resulting
token. Output claims are formatted as ‘‘Type: Value’’ pairs, such as Action: Send.

261

Part III: Tackling Advanced Azure Services Techniques

Figure 9-13: Adding the entries required to configure FederatedIdentity.net as a recognized token issuer.

Figure 9-14: The three default rules you can add when creating a third-party IP for your solution.

262

Chapter 9: Authenticating Users with .NET Access Control Services

In the earlier ‘‘Creating CardSpace Credentials at FederatedIdentity.net’’ section, you accepted the By
Default, Release the Following Claims to Any Relying Party check box option, which generated the three
rules shown in Figure 9-14. To understand how rules work, click the Edit link of the first input claim to
display the Scope Management: Edit Rule page (see Figure 9-15).

Figure 9-15: One of the three default rules for ServiceBus or Workflow scopes.

Following is an explanation of the entries for a claim transformation:

❑ The Input Claim(s): Type list lets you select one of the eight custom claim types; UserName for
this example.

❑ The Input Claim(s): Value text box contains the value to be matched for the rule to take effect;
oakleaf-sys for this example.

❑ The Input Claim(s): Issuer text box contains the scope name, accesscontrol.windows.net, for
oakleaf-sys as the Input Claim.

❑ The Output Claim(s): Type list contains the same eight choices as the Input Claims(s): Type list,
but Action is the most common selection.

❑ The Output Claim(s): Value text box for the Action type contains Send to send the Input to the
Output Claim.

❑ The Input Claim(s): Issuer text box contains the scope name to which the input claim is sent;
servicebus.accesscontrol.windows.net for this example.

263

Part III: Tackling Advanced Azure Services Techniques

The Group special claim type doesn’t appear in Figure 9-15’s list and is required by the following line in
the Federation.sln solution’s Client project’s Program class’s Main() method:

behavior.Credentials.FederationViaCardSpace.ClaimTypeRequirements.Add(
new ClaimTypeRequirement("http://ipsts.federatedidentity.net/group"));

To add the required Group claim to the scope, you must substitute the Group claim type from
FederatedIdentityNet for AccessControl’s default Group claim type. To do this, click the Claim Types
link to open the Claim Types list, click the delete link, and click OK to confirm the deletion.

Click Add Claim Types to open the Add Claim Type form, type Group in the Display Name text box,
http://ipsts.federatedidentity.net/group in the Claim Type text box (see Figure 9-16), and click Save to
save your substitution.

Figure 9-16: Substituting a Group custom claim in the http://oakleaf-acs.servicebus.windows.net/
scope.

Click Save to save the changes and return to the Scope Management: Claim Types page.

Click the Rules link and click Add Rules to open the Add Rules form. In the Input Rules group, select
Group from the Type list, type Domain Users in the Value text box and FederatedIdentityNet in the
Issuer text box (see Figure 9-17). Click Save to save your changes.

Your Rules form appears as shown in Figure 9-18.

Registering with FederatedIdentity.net as a Relying Party
The ipsts.federatedidentity.net IP is an auditing STS and maintains a list of the RPs to which it’s
willing to send tokens. To add the new claim to the IP-STS, log in to https://ipsts.federatedidentity.
net/MgmtConsole, click the Manage Relying Parties button to open the Relying Parties Policy page, click
Edit/View and verify that at least the default and Group claims check boxes are marked in the Select
Claims to Release list for each Policy (see Figure 9-19).

264

Chapter 9: Authenticating Users with .NET Access Control Services

Figure 9-17: Adding the Group rule to the http://oakleaf-acs.servicebus.windows.net/ scope.

Figure 9-18: The Rules form with the new Group rule added.

265

Part III: Tackling Advanced Azure Services Techniques

Figure 9-19: Verifying the presence of required Selected Claims in the Relying Parties page.

If Group isn’t marked, mark it before returning to the Relying Parties Policy page.

Return to the Relying Party Policies page and click Add a New Policy to open the Create a
New Policy form, type accesscontrol.windows.net in the Relying Party Name text box, type
http://accesscontrol.windows.net in the Relying Party URL text box, and mark the Upload Certificate for
Token Encryption check box. Then browse to and select \AzureServicesKit\Labs\IntroAccessControl-
Service\Assets\accesscontrol.windows.net.cer as the certificate’s public key, and mark at least the Site ID
and Group check boxes (see Figure 9-20). Click Save to save your changes and review the added policy
in the Relying Party Policies page.

Saving a copy of the individual InformationCard.crd files on the local machine for importing into the
CardSpace store when necessary is a good practice.

Verifying the Managed CardSpace Card(s) with the
EchoService

The Federation.sln solution’s Service and Client projects are command-line applications for a sample
WCF EchoService. The service simply echoes the text sent to it by invoking the Echo(string text)
method (OperationContract). To verify that the managed CardSpace card’s rules work with the Service
and Client projects, do the following:

1. Open Federation.sln in VS 2008, right-click Solution Explorer’s Service node and choose
Debug, Start New Instance to start the WCF service and open the console window. Type

266

Chapter 9: Authenticating Users with .NET Access Control Services

the ACS solution name (oakleaf-acs, for this example), press Enter, type your solution’s
password, and press Enter. The Service returns the fully qualified service address and the
console appears as shown in Figure 9-21.

Figure 9-20: Mark the Site ID and Group check boxes on the Create a New Policy form.

Figure 9-21: Start the WCF service by typing the solution name and password
when requested.

2. Start the Client project by right-click the Client Node and choose Debug, Start New Instance.
Type the solution name, and press Enter (see Figure 9-22).

267

Part III: Tackling Advanced Azure Services Techniques

Figure 9-22: Start the WCF Client project by typing the solution name.

3. After a few seconds, Windows CardSpace’s Do You Want to Send a Card to This Site dialog
opens to let you select the managed card to send to the accesscontrol.windows.net site
(see Figure 9-23).

Figure 9-23: The Windows CardSpace dialog leading to selecting a IP-STS’s card for the service.

4. Click the Yes, Choose a Card to Send link to open the Choose a Card to Send to:
accesscontrol.windows.net dialog (see Figure 9-24).

5. Select the ipsts.federatedidentity.net card and click the Preview button to open a Do You
Want to Send This Card to: accesscontrol.windows.net dialog (see Figure 9-25). Group is
colored red and marked with an asterisk to indicate that the required value is missing.

268

Chapter 9: Authenticating Users with .NET Access Control Services

Figure 9-24: The CardSpace dialog for selecting the card to retrieve.

Figure 9-25: Previewing the selected managed card and its required field(s).

269

Part III: Tackling Advanced Azure Services Techniques

6. Click Retrieve to update the CardSpace credential with recently modified data.

7. Click Send to open the Enter Your Password dialog (see Figure 9-26).

Figure 9-26: The ipsts.federatedidentity.net card is password
protected.

8. Type the password for your FederatedIdentity.net account and click OK to send the token to
your ACS solution and echo the message as shown in Figure 9-27.

Figure 9-27: The message returned by the Echo service to the client.

270

Chapter 9: Authenticating Users with .NET Access Control Services

Summary
Microsoft .NET Services are a set of three highly scalable services hosted in Windows Azure for .NET
developers: The .NET Access Control Service, .NET Service Bus and .NET Workflow Service. ACS inter-
acts with the .NET Service Bus to minimize the need for complex programming to secure services that
users external to your organization must access. The .NET Workflow Service had been temporarily
removed from the .NET Services SDK when this book was written; it will be reinstated in the Windows
Azure Platform when Microsoft releases .NET 4.0 and its improved Workflow implementation.

ACS is a Security Token Service that supports claim-based user authentication and authorization by
several methods, including username/password combinations, Windows Live ID, Windows CardSpace,
X.509 certificates, or SAML security tokens issued by third parties. ACS’s recognition of third-party
STSs enables federation of authentication and authorization operations for external users. This chapter’s
sample project takes advantage of Microsoft’s Identity Lab to emulate a commercial third-party federated
STS.

The chapter began with instructions for provisioning a .NET Services solution from the Windows Azure
Developer Portal as well as downloading the required .NET Services SDK and optional Azure Man-
agement Tools and Training Kit. Beta versions of Windows Identity Foundation and Active Directory
Federation Service, which formerly were two of the three components of a framework that was code-
named ‘‘Geneva,’’ aren’t used in this chapter’s example because they weren’t compatible with Windows
CardSpace and Windows Azure WebRole and other applications when this book was written.

The chapter concludes with detailed instructions for creating a Windows CardSpace information card
sample with help from the Identity Lab and then using the card to implement a simple ACS/Service Bus
federated identity application based on the Azure Services Training Kit’s IntroAccessControlServices
hands-on lab. The chapter concludes with instructions for testing the Service Bus project’s federated
authentication and authorization features.

271

Interconnecting Services
with the .NET Service Bus

Chapter 9 introduced you to the .NET Service Bus (SB) in the context of the .NET Access
Control Service (ACS). This chapter concentrates on using the SB and its various messaging
patterns for traversing firewalls and Network Address Translation (NAT) devices while
interconnecting Windows Azure and other applications via the Internet.

The .NET Service Bus was formerly known as the Internet Service Bus when it was in
Biz Talk Services’ beta testing stage. Biz Talk Services was part of the Biz Talk Labs
(http://labs.biztalk.net) incubation project and was renamed as the .NET Service
Bus in 2008.

SB enhances the industry-standard Enterprise Service Bus (ESB) pattern by integrating enterprise
applications with a bidirectional messaging fabric or bus designed specifically for service integration
over the Internet (see Figure 10-1).

SB provides the following features or services:

❑ Federated identity and access control with .NET Access Control Services (ACS), Windows
CardSpace and, optionally, the Windows Identity Foundation (WIF) and Active Directory
Federation Services (ADFS)∗

❑ Consistent service and endpoint naming to simplify relaying or routing of messages

❑ Service registry to simplify discovery by NAT clients behind firewalls and other users

❑ A common messaging fabric, which offers multiple communication options, including
publish/subscribe (pub/sub) or send/listen features

❑ Messaging with RESTful HTTP Request/Response, SOAP, WS-*, and Windows
Communication Framework (WCF) protocols

∗When this book was written, ‘‘Geneva’’ Framework Beta 2 (WIF’s predecessor) wasn’t compatible with
the Windows Azure Fabric because of its use of the Data Protection Application Programming Inter-
face (DPAPI). ‘‘Geneva’’ Framework Beta 2’s Windows CardSpace ‘‘Geneva’’ Control Panel applet wasn’t
compatible with Windows Vista’s and Windows 2010’s default Windows CardSpace applet.

Part III: Tackling Advanced Azure Services Techniques

❑ Integration with service orchestration by .NET Services Workflow Service (WFS) for
processing messages in accordance with a predefined business process or workflow

Service Orchestration

Naming

.Net Service Bus

Federated Identity
and

Access Control

Clients
(Desktop,
Silverlight,

Web/Browser

Windows
CardSpace,

Windows Identity
Foundation and
Active Directory

Federation Services

Your Service
(Windows

Communication
Framework,

SOAP, WS=*)

On-Premises
Enterprise

Service Bus

Thrid-Party and
Cloud-Based
Web Services

Service Registry

Messaging Fabric

Figure 10-1: .NET Services’ Service Bus extends the traditional Enterprise Service Bus pattern with
federated security and access control features.

SB brokers differences of identity management, naming conventions, message formats, and communica-
tion protocols across services. After a service joins the bus, any other client or service on the bus can con-
nect to it over the Internet, regardless of its ability to communicate with other services or clients directly.

This chapter requires familiarity with the concepts of ASP.NET web services and WCF but doesn’t expect
readers to have WCF development expertise.

Creating a .NET Services Solution and
Installing Prerequisites

Follow Chapter 9’s ‘‘Creating a .NET Services Solution’’ section except for the solution name; Chapter 9’s
Access Control Service solution name is oakleaf-acs; for this example, the solution name is oakleaf-sb.

You won’t be able to use oakleaf-sb as your solution name because all solution names must be globally
unique.

When you click the Service Bus button on the Manage Services page, the Microsoft .NET Service Bus
Overview page displays an Endpoint Quick Reference section with examples of typical SB endpoint
URIs for the solution name you chose (see Figure 10-2).

274

Chapter 10: Interconnecting Services with the .NET Service Bus

Figure 10-2: The Microsoft .NET Service Bus Overview page’s Endpoint Quick
Reference section provides endpoint URI examples.

The oakleaf-sb solution owns the DNS root namespaces sb://oakleaf-sb.servicebus.windows.net
for traditional SOAP (TCP/IP) transport and http[s]://oakleaf-sb.servicebus.windows.net for the
RESTful HTTP API. You’re free to extend the root URI with a hierarchy of your choosing, as illustrated
by the examples in Figure 10-2.

If you haven’t done so already, you must install the current .NET Services SDK CTP as described in
Chapter 9’s ‘‘Installing the .NET Services SDK and Other Tools’’ section.

Relaying Messages with SB
The basic SB messaging fabric supplies a centralized, load-balanced relay service, which supports multi-
ple transport protocols and web-service standards, specifically REST, SOAP, and WS-*. The relay service
provides several connectivity options and can help negotiate direct peer-to-peer connections when
feasible.

SB is designed to be platform agnostic, but is optimized for .NET 3.5 and WCF for usability and perfor-
mance. SB, ACS, and WFS provide support for SOAP and REST interfaces, so it’s possible for other SOAP
or REST-compliant programming environments to integrate with these .NET Services. The .NET Services
SDK, introduced in Chapter 9, provides support for C# and VB. Java and Ruby SDKs also support these
two popular programming languages. The .NET Services SDK sets up WCF relay bindings and their
channel components, and integrates them with SB automatically.

SB’s relay bindings provide service endpoints with secure, Internet-accessible addresses regardless of the
actual network location of the machine hosting the service, such as the following location types:

❑ Computers connecting through the Network Address Translation (NAT) service whose primary
IP (v4) address is in a private range that’s not normally Internet addressable, such as 10.x.x.x,
192.168.x.x, or 172.16.x.x-172.31.x.x

❑ Computers residing behind one or more firewalls that ordinarily prevent incoming connections

❑ Computers without permanently assigned IP addresses under publically registered domain
names

275

Part III: Tackling Advanced Azure Services Techniques

To overcome these types of constraints, SB acts as a web service intermediary router, which doesn’t affect
the content of messages it passes between the endpoints. SB uses .NET Services Access Control Service
(ACS) to authenticate server and client users. The Microsoft.ServiceBus namespace includes a set of
ACS client credential helpers that automatically acquire default username and password security tokens
from the .NET Services account credential you used to create the solution. The next section describes how
to enable these credentials.

Analyzing the .NET Services SDK’s
EchoSample Solution

The Microsoft .NET Services SDK (March 2009 CTP) includes several sample projects under the \Program
Files\Microsoft .NET Services SDK . . . \Samples\ServiceBus folder. The \GettingStarted folder contains
an Echo folder with subfolders for C# and VB versions of an Echo service. The Echo service is a simple
WCF solution with Server and Client console projects in an EchoSample.sln solution. The service accepts
a string from the client and echoes it back (see Figure 10-3).

Figure 10-3: This simple web service (upper) and client (lower) console
authenticate their user with the SB solution name and password, and then
echo a string between the client and service.

Inspecting the Service Project’s EchoContract.cs,
EchoService.cs, and Program.cs Files

The EchoService.sln’s Service C# project has a reference to \Program Files\Microsoft .NET Services SDK
(March 2009 CTP)\Assemblies\Microsoft.ServiceBus.dll and contains three class files: EchoContract.cs,
EchoService.cs, and Program.cs. Listing 10-1 shows the contents of EchoContract.cs, which defines
IEchoContract and IEchoChannel interfaces.

276

Chapter 10: Interconnecting Services with the .NET Service Bus

Listing 10-1: The content of the Service\EchoContract.cs class file

namespace Microsoft.ServiceBus.Samples
{

using System;
using System.ServiceModel;

[ServiceContract(Name = "IEchoContract",
Namespace = "http://samples.microsoft.com/ServiceModel/Relay/")]
public interface IEchoContract

{
[OperationContract]
string Echo(string text);

}

public interface IEchoChannel : IEchoContract, IClientChannel { }
}

The EchoContract.cs file is identical for the Service and Client projects.

Listing 10-2 defines the EchoService WCF service, which inherits IEchoContract and specifies the action
performed, returning the text string to the client.

Listing 10-2: The content of the Service\EchoService.cs class file

namespace Microsoft.ServiceBus.Samples
{

using System;
using System.ServiceModel;

[ServiceBehavior(Name = "EchoService",
Namespace = "http://samples.microsoft.com/ServiceModel/Relay/")]

class EchoService : IEchoContract
{

public string Echo(string text)
{

Console.WriteLine("Echoing: {0}", text);
return text;

}
}

}

The Service project’s App.config file is identical to that for a WCF Service Application project except for
the netTcpRelayBinding attribute value that specifies the relay service and is highlighted in Listing 10-3.

Listing 10-3: The contents of the Service\App.config file; the attribute value that
specifies the RelayService is highlighted

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.serviceModel>
<services>

Continued

277

Part III: Tackling Advanced Azure Services Techniques

Listing 10-3: The contents of the Service\App.config file; the attribute value that
specifies the RelayService is highlighted (continued)

<!-- Application Service -->
<service name="Microsoft.ServiceBus.Samples.EchoService">
<endpoint contract="Microsoft.ServiceBus.Samples.IEchoContract"

binding="netTcpRelayBinding" />
</service>

</services>
</system.serviceModel>

</configuration>

According to the .NET Services Library documentation, Microsoft.ServiceBus.NetTcpRelayBinding
generates a run-time communication stack by default, which uses transport security, TCP for message
delivery, and a binary message encoding. This binding is the appropriate .NET Services system-provided
choice for communicating over an Intranet.

The Client project’s App.config file is identical to that of the Server project except for substitution of
<client> for <services>, Endpoint for Service, and the addition of a name="RelayEndpoint" attribute
value pair, as highlighted in Listing 10-4.

Listing 10-4: The contents of the Client\App.config file with differences from the
Service\App.config file highlighted

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.serviceModel>
<client>

<!-- Application Endpoint -->
<endpoint name="RelayEndpoint"

contract="Microsoft.ServiceBus.Samples.IEchoContract"
binding="netTcpRelayBinding"/>

</client>
</system.serviceModel>

</configuration>

Verifying the Service User’s Credentials with Code in
Program.cs

The Program.cs file contains code that requests the user to enter at the command prompt the solution
name and the password for the .NET Services account that hosts the solution. When you run the solu-
tion with F5, the Service project’s Main() method shown in Listing 10-5 requests the user to supply the
solution name and account password, requests the Azure Services Portal’s certificate for the user account
under which the solution runs, and then verifies the password supplied. If the solution name is found
and the password matches, the service opens.

278

Chapter 10: Interconnecting Services with the .NET Service Bus

Listing 10-5: Code to obtain and verify the Service project’s SolutionName and
Password and start the service

namespace Microsoft.ServiceBus.Samples
{

using System;
using System.ServiceModel;
using System.ServiceModel.Description;
using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Description;
using System.Text;

class Program
{

static void Main(string[] args)
{

// Determine the system connectivity mode based on the command line
// arguments: -http, -tcp or -auto (defaults to auto)
ServiceBusEnvironment.SystemConnectivity.Mode =

GetConnectivityMode(args);

Console.Write("Your Solution Name: ");
string solutionName = Console.ReadLine();
Console.Write("Your Solution Password: ");
string solutionPassword = ReadPassword();

// create a well-formed endpoint address in the solution’s
// namespace
Uri address = ServiceBusEnvironment.CreateServiceUri("sb",

solutionName, "EchoService");

// create the credentials object for the endpoint
TransportClientEndpointBehavior

userNamePasswordServiceBusCredential =
new TransportClientEndpointBehavior();

userNamePasswordServiceBusCredential.CredentialType =
TransportClientCredentialType.UserNamePassword;

userNamePasswordServiceBusCredential.Credentials.UserName.
UserName = solutionName;

userNamePasswordServiceBusCredential.Credentials.
UserName.Password = solutionPassword;

// create the service host reading the configuration
ServiceHost host =

new ServiceHost(typeof(EchoService), address);

// add the Service Bus credentials to all endpoints
// specified in config
foreach (ServiceEndpoint endpoint in

Continued

279

Part III: Tackling Advanced Azure Services Techniques

Listing 10-5: Code to obtain and verify the Service project’s SolutionName and
Password and start the service (continued)

host.Description.Endpoints)
{

endpoint.Behaviors.
Add(userNamePasswordServiceBusCredential);

}

// open the service
host.Open();

Console.WriteLine("Service address: " + address);
Console.WriteLine("Press [Enter] to exit");
Console.ReadLine();

// close the service
host.Close();

}
}

}

The SDK Utilities region at the end of the file contains the code for the GetConnectivityMode() method
that sets the SystemConnectivity.Mode property to one of the following ConnectivityMode enumeration
values:

❑ ConnectivityMode.Tcp is the default and causes all one-way and event listeners to create
independent connections through port 808 (unsecured) or 828 (secured by SSL/TLS).

❑ ConnectivityMode.Http specifies an alternate HTTP polling mode through outbound-only port
80 (unsecured) or port 443 (secure by SSL/TLS).

❑ ConnectivityMode.AutoDetect probes the connections to auto-detect the mode to use; TCP is
the preferred mode.

In the absence of an /auto, -auto, /tcp, or -tcp command-line argument, the GetConnectivityMode()
method returns ConnectivityMode.AutoDetect.

Invoking the ServiceBusEnvironment.CreateServiceUri() method with the arguments shown in
Listing 10-5 generates the sb://oakleaf-sb.servicebus.windows.net/EchoService URI as the service
endpoint location, as shown in Figure 10-3’s upper console window.

Invoking the host.Open() method POSTs a request to ACS http:servicebus.accesscontrol.windows.
net/sts/username_for_certificate, which is one of the six solution endpoints. It takes a second or
two to process the request, which has a payload of about 9KB of a mostly encrypted SOAP envelope; the
response is a mostly encrypted SOAP response envelope that’s nearly 20KB in size. Message encryption
uses the WS-Security standard, rather than SSL/TLS transport encryption, to maintain data confidential-
ity. Figure 10-4 shows the SOAP response envelope open in IE8.

280

Chapter 10: Interconnecting Services with the .NET Service Bus

Figure 10-4: IE8 displaying a sample SOAP response envelope for solution name and password validation.

The \WROX\Azure\Chapter10 folder contains a pair of typical SOAP request and response
headers (*.txt) and message payload (*.xml) for validating the solution name and account password.
The complexity of the SOAP messages required to enable the wss-soap-message-security (also known
as, ws-security), ws-secureconversation, and ws-trust standards led to widespread adoption of simpler
RESTful Web services. However, ws-* standards are essential for establishing enterprise-level security
for cloud computing environments and federation of trust across domains.

If you type an invalid solutionName, you receive an ‘‘EndpointNotFoundException; No DNS entries
exist for host oakleaf-sx.servicebus.windows.net’’ message when invoking the host.Open() method.
An incorrect solutionPassword throws a ‘‘Fault exception was unhandled; authN failed: ‘oakleaf-sb’ of
PasswordCredential (#a5566db9-4a5a-52f7-edea-64a000a3cb08)’’ or similar exception.

The variable name solutionPassword is somewhat misleading because the password required is that
for the WLID you used to sign in to the .NET Services/SQL Services Portal to add the SB solution.
Similarly, userNamePassword is a misnomer because the name element is the solution name.

281

Part III: Tackling Advanced Azure Services Techniques

Consuming the EchoSample Solution’s Service
When you start a new Client instance by right-clicking Solution Explorer’s Client node and choosing
Debug, Start New Instance, you must enter the same solution name and account password as you did
to start the Service instance. An incorrect solution name throws a ‘‘SocketException was unhandled; No
such host is known’’ exception; an incorrect password throws the same ‘‘Fault exception . . . ’’ message
as the Service.

EchoSample.sln’s Client project contains a Contract.cs file that’s identical to that of the Service project.
There are only minor differences in the Program.cs file’s Main() method, which are highlighted in Listing
10-6. An IEchoChannel object replaces the Service project’s ServiceHost object.

Listing 10-6: Code to obtain and verify the Client project’s SolutionName and
Password, send the string to the service, and await the echoed text

namespace Microsoft.ServiceBus.Samples
{

using System;
using System.ServiceModel;
using Microsoft.ServiceBus;
using System.Text;

class Program
{

static void Main(string[] args)
{

// Determine the system connectivity mode based on the
// arguments: -http, -tcp or -auto (defaults to auto)
ServiceBusEnvironment.SystemConnectivity.Mode =

GetConnectivityMode(args);

Console.Write("Your Solution Name: ");
string solutionName = Console.ReadLine();
Console.Write("Your Solution Password: ");
string solutionPassword = ReadPassword();

// create the service URI based on the solution name
Uri serviceUri =

ServiceBusEnvironment.CreateServiceUri("sb",
solutionName, "EchoService");

// create the credentials object for the endpoint
TransportClientEndpointBehavior

userNamePasswordServiceBusCredential =
new TransportClientEndpointBehavior();

userNamePasswordServiceBusCredential.CredentialType =
TransportClientCredentialType.UserNamePassword;

userNamePasswordServiceBusCredential.Credentials.
UserName.UserName = solutionName;

userNamePasswordServiceBusCredential.Credentials.
UserName.Password = solutionPassword;

282

Chapter 10: Interconnecting Services with the .NET Service Bus

// create the channel factory loading the configuration
ChannelFactory<IEchoChannel> channelFactory =

new ChannelFactory<IEchoChannel>("RelayEndpoint",
new EndpointAddress(serviceUri));

// apply the Service Bus credentials
channelFactory.Endpoint.Behaviors.

Add(userNamePasswordServiceBusCredential);

// create and open the client channel

IEchoChannel channel = channelFactory.CreateChannel();
channel.Open();

Console.WriteLine("Enter text to echo (or [Enter] to
exit):");

string input = Console.ReadLine();
while (input != String.Empty)
{

try
{

Console.WriteLine("Server echoed: {0}",
channel.Echo(input));

}
catch (Exception e)
{

Console.WriteLine("Error: " + e.Message);
}
input = Console.ReadLine();

}

channel.Close();
channelFactory.Close();

}
}

}

Making Services Publicly Discoverable
Each solution generates an Atom 1.0 channel feed with an item group for each listening (running)
service that’s been added to the Service Bus Registry. IE8 detects the feed at the solution’s URI,
http[s]://oakleaf-sb.servicebus.windows.net for this example. .NET Services CTPs earlier
than March 2009 automatically registered all services for the solution. Subsequent CTPs require
code to add ServiceRegistrySettings.DiscoveryMode = DiscoveryType.Public and, optionally,
ServiceRegistrySettings.DisplayName = "FriendlyName", to each endpoint, as shown in Listing 10-7.

283

Part III: Tackling Advanced Azure Services Techniques

Listing 10-7: Code to add the solution to the Service Bus Registry and display
DiscoveryMode and DisplayName for each service in the solution’s Atom feed

ServiceRegistrySettings settings = new ServiceRegistrySettings();
settings.DiscoveryMode = DiscoveryType.Public;
settings.DisplayName = "OakLeaf-ServiceBus";

// Add the Service Bus credentials to all endpoints specified in the
// configuration
foreach (ServiceEndpoint endpoint in host.Description.Endpoints)
{

endpoint.Behaviors.Add(userNamePasswordServiceBusCredential);
endpoint.Behaviors.Add(settings);

}

Figure 10-5 shows IE8 detecting the Atom feed for the EchoService example with the code of Listing 10-7
added and the service listening.

Figure 10-5: IE8 responds similarly to Atom feeds from SB services, blogs, and other web
content.

If you don’t add a ServiceRegistrySettings.DisplayName value, items are named for the first level
of the service name hierarchy; EchoService for this example.

Figure 10-6 shows IE8 displaying the content of a file, oakleaf-sb.servicebus.windows.net.xml, created by
saving the Atom feed document’s with IE8’s Page, View Source command.

The \WROX\Azure\Chapter10 folder contains a NetTcpRelaySample folder with the EchoSample
solution modified to be publicly discoverable.

284

Chapter 10: Interconnecting Services with the .NET Service Bus

Figure 10-6: The Atom feed document content for the publicly discoverable oakleaf-sb solution.

Using the Configuration File to Specify
WSHttpRelayBinding

.NET Services adds several new HTTP bindings that the relay service supports: WebHttpRelayBinding,
BasicHttpRelayBinding, WSHttpRelayBinding, and WS2007HttpRelayBinding. These bindings enable
clients that don’t use WCF to connect to the SB and underlying services. WebHttpRelayBinding
is based on a simple RESTful HTTP implementation for compatibility with the widest range of
client platforms and web service client capabilities. BasicHttpRelayBinding is a very simple SOAP
implementation with limited security features. WSHttpRelayBinding requires clients to support the
same suite of WS-* protocols that the endpoint uses. WS2007HttpRelayBinding supports updated
versions of the Security, ReliableSession, and TransactionFlow binding elements, as well as SOAP 1.2
messaging.

As you would expect, HTTP relay bindings carry more processing overhead than their TCP
counterparts.

285

Part III: Tackling Advanced Azure Services Techniques

The \Program Files\Microsoft .NET Services SDK . . . \Samples\ServiceBus\ExploringFeatures
\Bindings\WSHttp\Simple\CS35 folder contains a WSHttpRelayEchoSample.sln that demonstrates
several SB features:

❑ Substituting the WSHttpRelayBinding for the NetTcpRelayBinding to avoid the need to open
client TCP port 808 or 828 (secure) for connecting to the service

❑ Using the configuration file (App.config for this example) to specify endpoint behaviors, and
other endpoint properties

❑ Refactoring the service name from EchoService to EchoHttpService to prevent conflicts with
EchoService names from other samples running simultaneously

❑ Specifying the client credential type and substituting a CardSpace information card for the
UserNamePassword in the configuration file

The Service and Client projects’ EchoContract.cs files, as well as the Service project’s Service.cs file are
identical to those of the preceding EchoService example, with the exception of the service name. The
Service project’s App.config file, shown in Listing 10-8, contains the principal difference between two
solutions with the additions highlighted.

Listing 10-8: The EchoHttpService’s Service project moves specification of credentials
and binding type from the Project.cs file’s Main() method to the App.config file

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.serviceModel>

<behaviors>
<endpointBehaviors>
<behavior name="cardSpaceClientCredentials">

<transportClientEndpointBehavior credentialType="CardSpace" />
</behavior>

</endpointBehaviors>
</behaviors>

<bindings>
<!-- Application Binding -->
<wsHttpRelayBinding>
<binding name="default">

<security mode="None"/>
</binding>

</wsHttpRelayBinding>
</bindings>

<services>
<!-- Application Service -->
<service name="Microsoft.ServiceBus.Samples.EchoHttpService">
<endpoint name="RelayEndpoint"

contract="Microsoft.ServiceBus.Samples.IEchoContract"
binding="wsHttpRelayBinding"

286

Chapter 10: Interconnecting Services with the .NET Service Bus

bindingConfiguration="default"
behaviorConfiguration="cardSpaceClientCredentials"
address="" />

</service>
</services>

</system.serviceModel>
</configuration>

The following table describes valid values of the credentialType attribute supplied by the
TransportClientCredentialType enum as provided by the Microsoft.ServiceBus class library
documentation:

Member name Description

AutomaticRenewal A self-issued Windows CardSpace information card that is
registered with the Access Control service through the Access
Control portal’s account management page. This option
requires no further settings on the Credentials property. The
difference between the CardSpace and AutomaticRenewal
credentials is that a credential configured with this type will
cause the access token to be automatically renewed as needed.

CardSpace A self-issued Windows CardSpace information card that is
registered with the Access Control service through the Access
Control portal’s account management page. This option
requires no further settings on the Credentials property.

FederationViaCardSpace A managed Windows CardSpace information card issued by
and backed by an identity provider that is trusted by the
Access Control service.

Unauthenticated No client credential provided. This option avoids acquiring
and sending a token altogether and is required for all clients
that are not required to authenticate per their service binding’s
policy.

UserNamePassword The username/password credential for the Service Bus
solution registered with the Access Control service. The
credential is set on the nested UserName.UserName and
UserName.Password properties of the Credentials property.

X509Certificate An X.509 certificate for the Service Bus solution that has been
registered with the Access Control service through the Access
Control portal’s account management page. The certificate
(which must contain a private key) is specified on the nested
ClientCertificate property of the Credentials property.

287

Part III: Tackling Advanced Azure Services Techniques

Associating a Self-Issued Card Space Identity Card with the
Current Solution

The <behaviors> group requires the client to have a self-issued CardSpace credential associated with the
oakleaf-sb solution. For this example, the ipsts.federatedidentity.net (FedId) information cards
you created in Chapter 9 aren’t valid as the default credential for the oakleaf-sb solution, but one of
them will be selected as the default card for the solution. To enable establishing a new self-issued card as
the default, open Control Panel’s Windows CardSpace applet (see Figure 10-7).

Figure 10-7: The Windows CardSpace Control Panel applet with a single FedId card present.

To create a new self-issued CardSpace credential, click the Add a Card button to open the Add a Card
dialog (see Figure 10-8), and click the Create a Personal Card button to open the Edit a New Card dialog
and type a name for the card; oakleaf_sb for this example (see Figure 10-9).

Card names can only contain letters ([a–z A–Z]), digits ([0–9]), and underscore (_) and must begin
with letters or an underscore.

Click the Save button to save your changes and close the applet.

288

Chapter 10: Interconnecting Services with the .NET Service Bus

Figure 10-8: The CardSpace applet’s Add a Card dialog with a Personal (self-issued) card
selected.

Figure 10-9: Name the new self-issued CardSpace card in the Edit a New Card dialog.

289

Part III: Tackling Advanced Azure Services Techniques

To associate the new card with your current solution, open the Solution: Your Solution page at
http://portal.ex.azure.microsoft.com/View.aspx, navigate to your solution (oakleaf-sb for this
example) in the My Subscriptions list, click the Credentials link to open the Credential Management
page, and click the Windows CardSpace Information Card link to expose the Select a Card button (see
Figure 10-10). Select the new card and click Send to send the CardSpace card to the Azure portal.

Figure 10-10: Associate the new CardSpace card with the current solution.

Assign a friendly name in the Card Name text box (oakleaf_sb for this example), and click Save to asso-
ciate the new information card with the currently selected solution and open the Credential Management
Page (see Figure 10-11).

Correcting the Autogenerated Scope for the Solution
If you run the WSHttpRelayEchoSample.sln solution’s Service project, type your solution name at
the prompt, press Enter to open the Windows CardSpace’s Choose a Card to Send to: accesscon-
trol.windows.net dialog, select the card to use (see Figure 10-12), and click Send to authenticate the ser-
vice, you encounter the exception shown in Figure 10-13 at the Main() method’s host.Open() instruction.

To eliminate the exception, close the console window and, with your version of the oakleaf-sb solution
selected, click the Getting Started: Access Control link to open the Manage the Microsoft .NET Access
Control Service page, and click the Manage Scopes button to open the Scopes page, which displays
http://echoservice as the only Scope URI.

290

Chapter 10: Interconnecting Services with the .NET Service Bus

Figure 10-11: Confirm that the selected CardSpace card is associated with the
current solution.

Figure 10-12: Select the card to send after specifying the solution name at the console’s
prompt.

291

Part III: Tackling Advanced Azure Services Techniques

Figure 10-13: The autogenerated http://echoservice
scope URI isn’t valid for the oakleaf-sb solution.

Click Add Scope to open the Add Scope page, type the service address URI requested in Figure 10-12
(http://oakleaf-sb.servicebus.windows.net/EchoService/) in the Scope URI text box and click
Save. To accommodate the refactored version in the . . . \Chapter 10 folder, repeat this process
with http://oakleaf-sb.servicebus.windows.net/EchoHttpService/ as the scope, as shown in
Figure 10-14.

Figure 10-14: Add well-formed URIs for the original and refactored versions of the
project.

Optionally, delete the errant http://echoservice/ scope.

Run the solution, type the solution name at the Service console prompt, and press Enter to start the
service and display the service address. Right-click Solution Explorer’s Client node, choose Debug,
Start a New Instance, type some text to echo, press Enter, and select and send the CardSpace card
again.

292

Chapter 10: Interconnecting Services with the .NET Service Bus

Specifying Binding Details in App.config
The <bindings> group and the emphasized attribute/value pairs in the <endpoint> element’s binding
attribute shown earlier in Listing 10-8 specify the binding element used to specify an HTTP transport for
transmitting messages on the Service Bus relay.

The \WROX\Azure\Chapter10\WSHttpRelaySample folder includes RawHTTPClientRequestFile.txt
and RawHTTPClientResponseFile.txt files captured by Fiddler2. Notice that the <body> group at the end
of both files contains the text you typed in clear text because <security mode="None"/> is specified. The
following table describes members of the SecurityMode enum:

SecurityMode Member Name Description

None Security is disabled.

Transport Security is provided using a secure transport (for example,
HTTPS).

Message Security is provided using SOAP message security.

TransportWithMessageCredential A secure transport (for example, HTTPS) provides integrity,
confidentiality, and authentication while SOAP message
security provides client authentication.

Listing 10-9 shows the EchoHttpService’s Main() method with behavior and binding settings specified in
App.config.

Listing 10-9: The EchoHttpService’s Main() method with behavior and binding settings
specified in App.config

namespace Microsoft.ServiceBus.Samples
{

using System;
using System.ServiceModel;
using System.ServiceModel.Description;
using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Description;

class Program
{

static void Main(string[] args)
{

string serviceBusSolutionName =
GetServiceBusSolutionName();

Uri address =
ServiceBusEnvironment.CreateServiceUri("http",
serviceBusSolutionName, "EchoHttpService");

Continued

293

Part III: Tackling Advanced Azure Services Techniques

Listing 10-9: The EchoHttpService’s Main() method with behavior and binding settings
specified in App.config (continued)

ServiceHost host =
new ServiceHost(typeof(EchoService), address);

host.Open();

Console.WriteLine("Service address: " + address);
Console.WriteLine("Press [Enter] to exit");
Console.ReadLine();

host.Close();
}

}
}

Summary
The .NET Service Bus is an implementation of the Enterprise Service Bus (ESB) model. SB enhances
connectivity between WCF clients, as well as clients running on other platforms, and WCF services
running the in Windows Azure Fabric. SB enables client and service communication to traverse firewalls
and Network Address Translation (NAT) devices that otherwise would not be possible. SB acts as a
web service intermediary router, which doesn’t affect the content of messages it passes between the
endpoints. SB uses .NET Services Access Control Service (ACS) to authenticate server and client users.
You can create as many .NET Service accounts (called solutions) as you want with an Azure CTP. A CTP
account gives you access to SB, as well as ACS, Workflow, and SQL Azure Database.

This chapter dives deeply into two of the many sample SB applications from the .NET Services SDK
(March 2009 CTP). The first, EchoService.sln in the \Program Files\Microsoft .NET Services SDK . . .

\Samples\ServiceBus\GettingStarted\Echo\CS35 folder, demonstrates a message relay service between
a WCF client and service that uses username/password security for a TCP transport. The simple service
does nothing more than echo text typed in a client console window back to the client. A modified version
of the EchoService.sln in the \WROX\Azure\Chapter10\NetTcpRelay folder demonstrates how to make
services publicly discoverable with Item entries of an Atom feed. Code in the Service and Client projects’
Program.cs file handles most configuration chores.

The second example, WSHttpRelayEchoSample.sln in the \Program Files\Microsoft .NET Services SDK
. . . \Samples\ServiceBus\ExploringFeatures\Bindings\WSHttp\Simple\CS35 folder, substitutes the
WSHttpRelayBinding for TcpRelayBinding. WSHttpRelayBinding enables clients that don’t support
WCF or are on networks that don’t allow inbound TCP traffic to consume WCF services. This sample
also demonstrates use of self-issued CardSpace information cards for service and client authentication.
The Service and Client projects’ App.config file specifies configuration of bindings and services.

294

Exploring .NET Service Bus
Queues and Routers

Microsoft .NET Services and the .NET Service Bus deliver the following three additional
components that this book hasn’t covered yet:

❑ .NET Workflow Service (WFS) provide a highly scalable and reliable cloud-based host for
Windows Workflow Foundation (WF) running as .NET code in the Azure Fabric.

❑ Service Bus Queues (SBQs) provide a durable first-in, first-out (FIFO) data structure to which
senders can add and from which listeners can retrieve messages.

❑ Service Bus Routers (SBRs) handle delivery of durable messages to all (multicast) or
individual subscribers. Listeners, including queues, can subscribe to these messages.

The .NET Services SDK (March 2009 CTP) introduced SBQs and SBRs.

The .NET Services Team announced on June 12, 2008 that they ‘‘would hold off further releases of
the Workflow Service until after .NET Framework 4 ships’’ to enable building the Workflow Service
on .NET Framework 4’s workflow engine. The team took down Windows Azure’s Workflow Service
runtime in July 2008 and removed Workflow Service elements from the SDK for .NET Services July
2009 CTP. An updated electronic version of this chapter that includes a sample Workflow Service
project for VS 2010 will be posted to the Wrox Website for this book as soon as possible after the team
ships the first CTP of Workflow Services for .NET 4.0.

This chapter describes basic features and implementations of SBQ and SBR components and pro-
vides simple C# demonstration projects based on the .NET Services SDK’s sample solutions. All
examples use .NET Access Control Services (ACS) and Service Bus (SB) techniques you learned in
Chapters 9 and 10.

Part III: Tackling Advanced Azure Services Techniques

You can learn more about the basics of WF at the MSDN .NET Framework Developer’s landing page for
WF (http://bit.ly/SGfsG, http://msdn.microsoft.com/en-us/netframework/aa663328.aspx).
‘‘A Developer’s Guide to the Microsoft .NET Service Bus’’ whitepaper describes SBQs and SBRs, which
the .NET Services SDK (March 2009 CTP) introduced (http://bit.ly/3o9Bmz).

Persisting Messages in Service Bus Queues
The primary application for the SB is acting as a transient relay between senders and active listeners. If
the listener isn’t active when the sender issues a message, the message is lost. Message loss also occurs if
the sender issues messages faster than the listener can process them. To overcome these issues, the .NET
Services team introduced SB Queues and SB Routers in the .NET Services SDK’s March 2009 CTP. SBQs
and SBRs are discoverable, persisted SB objects that are independent of listeners’ lifetimes. Figure 11-1
illustrates an SBQ’s components and their relationships; later sections describe SBRs, which can also
use SBQs.

Service Bus
http: //SolutionName.sevicebus.windows.net /QueueName

Tail Head

Enqueue
.NET TCP or HTTP[S]

Dequeue

Firewall or NAT Device

HTTPS

Queue

Sender Queue Policy
(Properties)

Queue
Management
Client Class

Listener

Messages Messages

Figure 11-1: The relationship of SBQ components.

This chapter uses the terms listener and receiver interchangeably.

Creating SBQs with the QueueManagementClient Class
Like the other .NET Services, the basic API is REST with HTTP GET and POST methods and Atom-
Pub extensions to define SBQs. The .NET Services SDK’s Microsoft.ServiceBus namespace
(Microsoft.ServiceBus.dll) provides the wrapper classes described in the following table to simplify
creating SBQs with a specific set of policies and accessing queues with clients.

296

Chapter 11: Exploring .NET Service Bus Queues and Routers

Queue Class Description

QueueClient Provides client access to an SBQ

QueuePolicy Specifies the set of rules and constraints for an SBQ

QueueManagementClient Enables clients to manage SBQs

Listing 11-1 shows the skeleton C# code for using the preceding classes.

Listing 11-1: Skeleton C# code for the QueueMangementClient class’s methods

public static class QueueManagementClient
{

public static QueueClient CreateQueue(TransportClientEndpointBehavior
credential, Uri queueUri, QueuePolicy queuePolicy);

public static void DeleteQueue(TransportClientEndpointBehavior credential,
Uri queueUri);

public static QueueClient GetQueue(TransportClientEndpointBehavior
credential, Uri queueUri);

public static QueuePolicy GetQueuePolicy(TransportClientEndpointBehavior
credential, Uri queueUri);

public static DateTime RenewQueue(TransportClientEndpointBehavior credential,
Uri queueUri, TimeSpan requestedExpiration);

}

Following are the steps to create a new queue based on the Readme.htm file for the .NET Services SDK’s
Queue sample projects:

1. Create a QueuePolicy instance and define the name and desired properties of the queue. The
<QueuePolicy> element is defined in the namespace http://schemas.microsoft.com/ws
/2007/08/connect.

2. Obtain a security token for the SB solution from the AccessControlService (see Listing 11-2).

3. Test for the existence of a queue of the same name in the solution (see Listing 11-3, which
indicates existence of the specified queue).

4. If the specified queue doesn’t exist, embed the serialized QueuePolicy into an ATOM
1.0 <atom:entry> as an extension and POST the entry to the designated queue URI with
the content-type application/atom+xml;type=entry. The request must carry an
X-MS-Identity-Token header and the respective identity must have Manage permission on
for the scope that covers the queue’s URI (see Listing 11-4).

If the queue was successfully created, the POST request returns with a 201 (created) status code along
with a Location header. The location header contains the queue’s management URI that you need to
retain in your application state to have access to the queue’s metadata and management functions. If the
queue could not be created successfully, the request may yield one of the HTTP status codes described in
the table following Listing 11-4.

297

Part III: Tackling Advanced Azure Services Techniques

Listing 11-2: HTTP request and response headers to obtain the security token for an
SBQ as the response payload

GET /issuetoken.aspx?u=oakleaf-sb&p=safegate HTTP/1.1
Host: accesscontrol.windows.net
Connection: Keep-Alive

HTTP/1.1 200 OK
Cache-Control: private
Content-Length: 40
Content-Type: text/plain
Server: Microsoft-IIS/7.0
X-AspNet-Version: 2.0.50727
Set-Cookie: ASP.NET_SessionId=jjqlyg45u4xxeo55u3mec1r3; path=/; HttpOnly
X-Powered-By: ASP.NET
Date: Tue, 26 May 2009 21:11:30 GMT

LMT8pPDDy0j2aen5qDFWxCfL+2pcosiBAvQlRg==

Listing 11-3: The Atom payload returned by a GET request for an active queue using the
security token returned by Listing 11-5

GET / HTTP/1.1
X-MS-Identity-Token: LMT8pPDDy0j2aen5qDFWxCfL+2pcosiBAvQlRg==
Host: oakleaf-sb.servicebus.windows.net

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Content-Type: application/atom+xml;type=feed;charset=utf-8
Server: Microsoft-HTTPAPI/2.0
Date: Tue, 26 May 2009 21:11:31 GMT

164
<feed xmlns="http://www.w3.org/2005/Atom">

<title type="text">Publicly Listed Services</title>
<subtitle type="text">
This is the list of publicly-listed services currently available

</subtitle>
<id>uuid:88f27a0c-6adb-49fe-8494-baefebfd041a;id=3123</id>
<updated>2009-05-26T21:11:31Z</updated>
<generator>Microsoft® .NET Services - Service Bus</generator>

</feed>
0

Listing 11-4: The Atom payload to create a new queue with a lifetime of one hour
using the security token returned by Listing 11-5

POST /MyHttpQueue/ HTTP/1.1
X-MS-Identity-Token: quCHs/PDy0gmodPM4qfOf1XjT/chwcczGIaTUQ==

298

Chapter 11: Exploring .NET Service Bus Queues and Routers

Content-Type: application/atom+xml;type=entry;charset=utf-8
Host: oakleaf-sb.servicebus.windows.net
Content-Length: 371
Expect: 100-continue

<entry xmlns="http://www.w3.org/2005/Atom">
<id>uuid:e1a20be8-2fec-4b65-88df-82656feade09;id=1</id>
<title type="text" />
<updated>2009-05-26T21:33:25Z</updated>
<QueuePolicy xmlns:i="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://schemas.microsoft.com/ws/2007/08/connect">
<ExpirationInstant>2009-05-26T22:33:25.1328918Z</ExpirationInstant>

</QueuePolicy>
</entry>

HTTP/1.1 201 Created
Transfer-Encoding: chunked
Content-Type: application/atom+xml;type=entry;charset=utf-8
Expires: Tue, 26 May 2009 22:33:25 GMT
Location: https://oakleaf-sb.servicebus.windows.net/MyHttpQueue/!(queue)
Server: Microsoft-HTTPAPI/2.0
Date: Tue, 26 May 2009 21:33:25 GMT

300
<entry xmlns="http://www.w3.org/2005/Atom">

<id>uuid:61006d59-4ea2-4e16-82d1-6dfea136bb15;id=12865</id>
<title type="text">myhttpqueue</title>
<updated>2009-05-26T21:33:25Z</updated>
<link rel="alternate" href="https://oakleaf-sb.servicebus.windows.net/

MyHttpQueue/"/>
<link rel="self" href="https://oakleaf-
sb.servicebus.windows.net/MyHttpQueue/!(queue)"/>

<link rel="queuehead" href="https://oakleaf-
sb.servicebus.windows.net/MyHttpQueue/!(queue/head)"/>

<link rel="queuecontrol" href="https://oakleaf-
sb.servicebus.windows.net/MyHttpQueue/!(queue/control)"/>

<QueuePolicy xmlns="http://schemas.microsoft.com/ws/2007/08/connect"
xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

<Discoverability>Public</Discoverability>

<ExpirationInstant>2009-05-26T22:33:25.1328918Z</ExpirationInstant>
</QueuePolicy>

</entry>
0

299

Part III: Tackling Advanced Azure Services Techniques

Code Name HTTP Status Description

400 Bad Request The policy was malformed or invalid.

403 Forbidden The client did not provide an X-MS-Identity-Token
header, the provided token is no longer valid for use,
or the provided identity is not authorized to create a
queue at this location.

409 Conflict There is already a queue with an incompatible policy
at the given location or the location is occupied by a
router or a Service Bus listener.

415 Unsupported Media Type The request did not carry the required content-type
header.

500 Internal Server Error The processing failed on a condition internal to the
Service Bus service.

One of the reasons for selecting the HttpQueueSample for analysis in this chapter is the ability of a web
debugger, such as Fiddler2, to capture and display most or all traffic between the client and service.

Test-Driving the HttpQueueSample Solution
The . . .\HttpMessages\C#35\HttpQueueSample.sln solution is one of six sample projects in the
\Program Files\.NET Services SDK (July 2009 CTP)\Samples\ServiceBus\ExploringFeatures\Queues\
and \WROX\Azure\Chapter11\Queues folders. According to the Readme.htm file:

This sample demonstrates how to use the Microsoft .NET Services Service Bus Queue
feature using plain HTTP requests.

This sample shows a simple message producer (sender) and two types of message
consumers that leverage the Service Bus REST protocols to discover existing or new
create Queues and shows how to send messages into a Queue and retrieve messages
from a Queue with destructive and non-destructive (peek/lock) reads.

Queues in the Service Bus are free-format message queues that can accept, store, and
allow for retrieval of plain HTTP request messages with any HTTP method except GET
(and HEAD). Because Queues are one-way messaging primitives that provide decou-
pling of sender and receiver, GET is not a meaningful operation for Queues, since the
queue does not have access to the resource representation of the recipient(s) of the
messages it carries.

The HttpQueueSample solution consists of the following three projects:

❑ Sender requests the SB solution name and account password from the user, creates a new queue
at https://SolutionName.servicebus.windows.net/MyHttpQueue/ if it doesn’t exist, and lets
the user enter a text message to enqueue.

❑ Consumer discovers or creates the MyHttpQueue queue and polls it for messages in a loop with
destructive reads, which dequeue the message.

300

Chapter 11: Exploring .NET Service Bus Queues and Routers

❑ PeekLockConsumer discovers or creates the MyHttpQueue queue and polls it for messages; it ran-
domly decides whether to dequeue a locked message or place a lock on an unlocked message.

As of the July 2009 CTP, the maximum permissible message size is constrained to 60KB. The message
size limit for later versions is expected to be subject to system configuration and metadata available on
the customer’s service plan.

You can run the three projects in any sequence. The most common sequence is Sender, Consumer, which
enqueues a message that the Consumer reads after it starts. To execute this sequence, follow these steps:

1. Open \WROX\Azure\Chapter11\Queues\HttpMessages\C#35\HttpQueueSample.sln in
VS 2008 SP1 or later and press F5 to build and run the solution with Sender as the Startup
Project.

2. Type your solution name, press Enter, type your service account password, and press Enter
to obtain a security token from ACS.

3. If a client or network firewall requests permission for the application to pass a TCP request
through a port, grant the permission, close the console window, press F5 and redo step 2.

4. When the Sender console requests text to enqueue, type a brief message and press Enter.

5. Right-click the Consumer project’s Solution Explorer node and choose Debug, Start a New
Instance to open the Consumer console window.

6. If a client or network firewall requests permission for the application to pass a TCP request
through a port, grant the permission, close the console window, press F5 and redo step 5.

7. Observe that the message you typed in step 4 appears in the last line of the Consumer
console window (see Figure 11-2).

Figure 11-2: The Consumer project’s console window displaying the queued message.

301

Part III: Tackling Advanced Azure Services Techniques

Spelunking the HttpQueueSample Solution’s Code
Both console projects obtain a username/password authentication token from ACS, test for the existence
of a persistent object (queue or workflow), create and persist a message-oriented object, and send a
message to a queue or workflow. Listing 11-5 shows the code for the Sender project’s Main() method.

Listing 11-5: The Sender project’s Main() method code

namespace Microsoft.Samples.ServiceBus
{

using System;
using System.Linq;
using System.ServiceModel;
using Microsoft.ServiceBus;
using System.Text;
using System.ServiceModel.Channels;
using System.Net;
using System.Xml;
using System.ServiceModel.Syndication;
using System.IO;

class Program
{

static void Main(string[] args)
{

// Get UserNamePassword credentials

Console.Write("Your Solution Name: ");
string solutionName = Console.ReadLine();
Console.Write("Your Solution Password: ");
string solutionPassword = ReadPassword();

// Create the service URI based on the solution name

Uri queueUri =
ServiceBusEnvironment.CreateServiceUri(Uri.UriSchemeHttps,

solutionName,
"/MyHttpQueue/");

Uri queueManageUri;
Uri queueHeadUri;
// Get the existing queue or create a new one

string token = HttpGetAuthenticationToken(solutionName,
solutionPassword);

QueuePolicy queuePolicy = HttpGetQueue(token, queueUri,
out queueHeadUri);

if (queuePolicy == null)
{

// Create a new queue policy with an expiration time of 1 hour

queuePolicy = new QueuePolicy();

302

Chapter 11: Exploring .NET Service Bus Queues and Routers

queuePolicy.ExpirationInstant = DateTime.UtcNow +
TimeSpan.FromHours(1);

// Added to make queue publicly discoverable

queuePolicy.Discoverability = DiscoverabilityPolicy.Public;
queueManageUri = HttpCreateQueue(token, queueUri, queuePolicy);

}

// Added: Inspect the default QueuePolicy property values if set

var authorization = queuePolicy.Authorization;
var enqueueTimeout = queuePolicy.EnqueueTimeout;
var maxConcurrentReaders = queuePolicy.MaxConcurrentReaders;
var maxDequeueRetries = queuePolicy.MaxDequeueRetries;
var maxMessageAge = queuePolicy.MaxMessageAge;
var maxMessageSize = queuePolicy.MaxMessageSize;
var maxQueueCapacity = queuePolicy.MaxQueueCapacity;
var maxQueueLength = queuePolicy.MaxQueueLength;
var overflow = queuePolicy.Overflow;
var poisonMessageDrop = queuePolicy.PoisonMessageDrop;
var transportPolicy = queuePolicy.TransportProtection;

Console.WriteLine("Enter text to put into a queue message.
Press [enter] to exit.");

string input = Console.ReadLine();
while (input != String.Empty)
{

try
{

// Send message

HttpWebRequest sendRequest =
HttpWebRequest.Create(queueUri) as
HttpWebRequest;

sendRequest.Method = "POST";
sendRequest.Headers.Add("X-MS-Identity-Token",

token);
sendRequest.ContentType =

"text/plain;charset=utf-8";
using (var sendStream =

sendRequest.GetRequestStream())
{

using (var writer = new StreamWriter(sendStream,
Encoding.UTF8))

{
writer.Write(input);
writer.Flush();

}
}
sendRequest.GetResponse().Close();

Console.WriteLine("Sent: {0}", input);

Continued

303

Part III: Tackling Advanced Azure Services Techniques

Listing 11-5: The Sender project’s Main() method code (continued)

}
catch (Exception e)
{

Console.WriteLine("Error: " + e.Message);
}
input = Console.ReadLine();

}

// Exit and leave the queue persisted for the consumer.

}
// HttpGetAuthenticationToken() method
// HttpGetQueue() method
// GetParentUri() method
// HttpCreateQueue() method
// SDK Utility methods

}
}

A queue is an instance of a QueuePolicy. The following table lists members of the QueuePolicy class and
their default values. Default values of 2,147,483,647 (int32.MaxValue) represent an unlimited value.

Property Name Description Default Value

Authorization Gets or sets the authorization policy for
the current instance. (Inherited from
JunctionPolicy).

Required

Discoverability Determines whether and under what
circumstances the junction is discoverable
using the Atom feed. (Inherited from
JunctionPolicy)

Managers

EnqueueTimeout Gets or sets the enqueue timeout. 10 seconds

ExpirationInstant Gets or sets the expiration instant.
(Inherited from JunctionPolicy)

24 hours later

MaxConcurrent-Readers Gets or sets the maximum number of
concurrent readers.

2,147,483,647

MaxDequeueRetries Gets or sets the maximum number of
dequeue retries.

2,147,483,647

MaxMessageAge Gets or sets the maximum message age. 10 minutes

MaxMessageSize Gets or sets the max message size.
(Inherited from JunctionPolicy)

61,440

MaxQueueCapacity Gets or sets the maximum queue capacity. 2,097,152

MaxQueueLength Gets or sets the maximum queue length. 2,147,483,647

304

Chapter 11: Exploring .NET Service Bus Queues and Routers

Overflow Gets or sets the overflow policy, which
indicates the handling of messages in case
the buffer reached capacity and the
BufferTimeout expired.

RejectIncoming-Message

PoisonMessageDrop Gets or sets the poison message drop
endpoint address.

null

TransportProtection Gets or sets the type of transport
protection. (Inherited from
JunctionPolicy)

AllPaths

Only QueuePolicy property values set explicitly by code appear in the <QueuePolicy>
group of the Atom discovery <feed>’s <entry> for the instance, as shown emphasized in
Listing 11-6.

Listing 11-6: The Atom 1.0 feed for the https://oakleaf-sb.servicebus.windows.net/

endpoint

<feed xmlns="http://www.w3.org/2005/Atom">
<title type="text">Publicly Listed Services</title>
<subtitle type="text">
This is the list of publicly-listed services currently available

</subtitle>
<id>uuid:ff9bc499-19aa-49e4-a1da-d8c2afb349ea;id=340</id>
<updated>2009-05-27T19:46:45Z</updated>
<generator>Microsoft® .NET Services - Service Bus</generator>
<entry>
<id>uuid:ff9bc499-19aa-49e4-a1da-d8c2afb349ea;id=341</id>
<title type="text">myhttpqueue</title>
<updated>2009-05-27T19:46:45Z</updated>
<link rel="alternate" href="https://oakleaf-sb.servicebus.windows.net/

MyHttpQueue/"/>
<link rel="self"

href="https://oakleaf-sb.servicebus.windows.net/
MyHttpQueue/!(queue)"/>

<link rel="queuehead"
href="https://oakleaf-sb.servicebus.windows.net/
MyHttpQueue/!(queue/head)"/>

<link rel="queuecontrol"
href="https://oakleaf-sb.servicebus.windows.net/
MyHttpQueue/!(queue/control)"/>

<QueuePolicy xmlns="http://schemas.microsoft.com/ws/2007/08/connect"
xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
<Discoverability>

Public
</Discoverability>
<ExpirationInstant>2009-05-27T20:08:25.2308651Z</ExpirationInstant>

</QueuePolicy>

Continued

305

Part III: Tackling Advanced Azure Services Techniques

Listing 11-6: The Atom 1.0 feed for the https://oakleaf-sb.servicebus.windows.net/

endpoint (continued)

</entry>
</feed>

The <link rel="alternate"...> link points to the queue’s tail, to which clients submit messages, and
<link rel="queuehead"...> points to the head from which consumers receive messages.

Delivering Messages with Service Bus
Routers

Routers forward messages from one or more publishers to one or more subscribers to create a pub/sub
messaging model with optional multicasting to all subscribers. Publishers send messages using HTTP,
HTTPS, or the SB’s ‘‘NetOneway’’ protocol as plain HTTP messages or SOAP 1.1/1.2 envelopes, but
neither publishers nor subscribers can invoke the HTTP GET method on one-way messages. Subscribers
can subscribe to a router either using a NetOnewayBinding listener or listen to any publicly reachable
HTTP endpoint.

The . . .\HttpRouter\C#35\HttpRouter.sln solution is one of two sample projects in the \Program
Files\.NET Services SDK (March 2009 CTP)\Samples\ServiceBus\ExploringFeatures\Routers\ and
\WROX\Azure\Chapter11\Routers folders. HttpRouter corresponds to the HttpQueueSample solution
and uses the RESTful HTTP protocol; the other sample solution, SoapRouter.sln, wraps messages in
SOAP 1.2 envelopes. According to the Readme.htm file, ‘‘This sample shows a simple message publisher
(sender) and two types of subscribers that leverage the Service Bus REST protocols to discover existing
or create new Routers and shows how to send messages into a Router and how to subscribe to and
receive messages via Routers.’’ Figure 11-3 is a diagram of a router with an optional queue.

Queues can subscribe to routers in the same way that listeners do.

The HttpRouter.sln solution contains the following three projects:

❑ Publisher requests the SB solution name and account password from the user, creates a new
router at https://SolutionName.servicebus.windows.net/MyHttpRouter/ if it doesn’t exist
and lets the user enter a text message to route.

❑ QueueSubscriber requests the SB solution name and account password from the user, creates a
new queue at https://SolutionName.servicebus.windows.net/MyHttpRouter/ if it doesn’t
exist and waits for a publisher to place messages in the queue. QueueSubscriber’s Main()
method code is almost identical to that in Listing 11-5.

❑ HttpPushSubscriber creates a uniquely named, Internet-facing HTTPS Web Service endpoint
on the SB with the WS2007HttpRelayBinding. The endpoint emulates a SOAP 1.2 endpoint that
might already exist in the Azure Fabric. Push subscriber endpoints aren’t required to use the SB.

Router and queue architecture is quite similar; therefore, HttpRouter’s Publisher project code, par-
tially shown in Listing 11-7, is very similar to HttpQueueSample’s Sender code. The Router API offers
RouterClient, RouterManagementClient, RouterPolicy, RouterSubscription, and other Router . . .

helper classes; all but RouterSubscription have corresponding Queue . . . classes.

306

Chapter 11: Exploring .NET Service Bus Queues and Routers

Service Bus
http: //SolutionName.sevicebus.windows.net /RouterName

Publish
.NET TCP or HTTP[S]

Subscribe

Firewall or NAT Device

HTTPS

Router

Sender Router Policy
(Properties)

Router
Management
Client Class

Listener

Messages Messages

Queue

Figure 11-3: The relationship of SBR components, including
an optional SBQ.

Listing 11-7: Code for the HttpRouter.Publisher project’s Main() method

namespace Microsoft.Samples.ServiceBus
{

using System;
using System.Linq;
using System.Net;
using System.ServiceModel.Syndication;
using System.Text;
using System.Xml;
using Microsoft.ServiceBus;

class Program
{

static void Main(string[] args)
{

// Get solution name and service account password

Console.Write("Your Solution Name: ");
string solutionName = Console.ReadLine();
Console.Write("Your Solution Password: ");
string solutionPassword = ReadPassword();

// Create the service URI based on the solution name

Uri routerUri = ServiceBusEnvironment.

Continued

307

Part III: Tackling Advanced Azure Services Techniques

Listing 11-7: Code for the HttpRouter.Publisher project’s Main() method (continued)

CreateServiceUri("https", solutionName,
"/MyHttpRouter/");

Uri subscriptionsUri;
Uri routerManageUri;

// Get the existing router or create a new one

string token = HttpGetAuthenticationToken(solutionName,
solutionPassword);

RouterPolicy routerPolicy = HttpGetRouter(token, routerUri,
out subscriptionsUri);

if (routerPolicy == null)
{

// Create a new router policy with an expiration of 1 hour

routerPolicy = new RouterPolicy();
routerPolicy.ExpirationInstant = DateTime.UtcNow +

TimeSpan.FromHours(1);

routerPolicy.MaxSubscribers = int.MaxValue;
routerPolicy.MessageDistribution =

MessageDistributionPolicy.AllSubscribers;

routerPolicy.TransportProtection =
TransportProtectionPolicy.None;

routerPolicy.Discoverability =
DiscoverabilityPolicy.Public;

routerManageUri = HttpCreateRouter(token, routerUri,
routerPolicy);

}

Console.WriteLine("Enter some text to put into a router
message. Press [enter] to exit.");

string input = Console.ReadLine();
while (input != String.Empty)
{

try
{

// Send the message

HttpWebRequest sendRequest =
HttpWebRequest.Create(routerUri+"?status="+
Uri.EscapeDataString(input)) as HttpWebRequest;

sendRequest.Method = "POST";
sendRequest.Headers.Add("X-MS-Identity-Token",

token);
sendRequest.ContentLength = 0;
sendRequest.GetResponse().Close();

Console.WriteLine("Sent: {0}", input);
}

308

Chapter 11: Exploring .NET Service Bus Queues and Routers

catch (Exception e)
{

Console.WriteLine("Error: " + e.Message);
}
input = Console.ReadLine();

}

// Exit and leave the router alive until it expires

}
// HttpGetAuthenticationToken() method
// HttpGetRouter() method
// GetParentUri() method
// HttpCreateRouter() method
// ReadPassword() method

}
}

Notice that the RouterPolicy instance has several router-specific property values (emphasized)
set explicitly, as well as TransportProtection, which also is a QueuePolicy member. The
MessageDistributionPolicy.AllSubscribers enumeration member specifies multicast delivery.

Running the HttpRouter.sln solution is similar to running HttpQueueSample.sln. Pressing F5 builds the
solution and runs the Publisher project. Typing a message and then starting the QueueSubscriber project
doesn’t display the message because QueueSubscriber creates the listener’s queue. Figure 11-4 shows the
result of sending router message #1 before opening the QueueSubscriber console window and sending
router message #2 after.

Figure 11-4: Router message #1 was sent before opening the QueueSubscriber
console; router message #2 (URL-encoded) was sent after.

309

Part III: Tackling Advanced Azure Services Techniques

As you would expect, HTTP POST headers and Atom-formatted payload for a new RouterPolicy, as
shown in Listing 11-8, are quite similar to those for a new QueuePolicy (refer to Listing 11-6).

Listing 11-8: HTTP POST request and response messages for creating a new
RouterPolicy instance

POST /MyHttpRouter/ HTTP/1.1
X-MS-Identity-Token: +SytR77Ey0jdTLeDXmuxlg/6jzMy5SG6RA/+yQ==
Content-Type: application/atom+xml;type=entry;charset=utf-8
Host: oakleaf-sb.servicebus.windows.net
Content-Length: 561
Expect: 100-continue

<entry xmlns="http://www.w3.org/2005/Atom">
<id>uuid:a38eb5a6-7319-4b12-9624-4c226e0f25d9;id=1</id>
<title type="text" />
<updated>2009-05-27T21:43:33Z</updated>
<RouterPolicy xmlns:i="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://schemas.microsoft.com/ws/2007/08/connect">
<Discoverability>Public</Discoverability>
<ExpirationInstant>2009-05-27T22:43:33.7426466Z</ExpirationInstant>
<TransportProtection>None</TransportProtection>
<MaxSubscribers>2147483647</MaxSubscribers>
<MessageDistribution>AllSubscribers</MessageDistribution>

</RouterPolicy>
</entry>

HTTP/1.1 201 Created
Transfer-Encoding: chunked
Content-Type: application/atom+xml;type=entry;charset=utf-8
Expires: Wed, 27 May 2009 22:43:33 GMT
Location: https://oakleaf-sb.servicebus.windows.net/MyHttpRouter/!(router)
Server: Microsoft-HTTPAPI/2.0
Date: Wed, 27 May 2009 21:43:34 GMT

35C
<entry xmlns="http://www.w3.org/2005/Atom">

<id>uuid:b1be1f1f-70da-49eb-8ca7-6e43b2988517;id=2317</id>
<title type="text">myhttprouter</title>
<updated>2009-05-27T21:43:34Z</updated>
<link rel="alternate" href="https://oakleaf-
sb.servicebus.windows.net/MyHttpRouter/"/>

<link rel="self"
href="https://oakleaf-sb.servicebus.windows.net/MyHttpRouter/!(router)"/>

<link rel="subscriptions"
href="https://oakleaf-sb.servicebus.windows.net/

MyHttpRouter/!(router/subscriptions)"/>
<RouterPolicy xmlns="http://schemas.microsoft.com/ws/2007/08/connect"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
<Discoverability>Public</Discoverability>
<ExpirationInstant>2009-05-27T22:43:33.7426466Z</ExpirationInstant>
<TransportProtection>None</TransportProtection>
<MaxSubscribers>50</MaxSubscribers>

310

Chapter 11: Exploring .NET Service Bus Queues and Routers

Figure 11-5: IE8 displaying the Atom 1.0 feed after running the HttpRouter
solution’s Publisher and QueueSubscriber projects.

<MessageDistribution>AllSubscribers</MessageDistribution>
</RouterPolicy>

</entry>
0

Figure 11-5 shows IE8 displaying the https://oakleaf-sb.servicebus.windows.net/ Atom feed after
running the Publisher and QueueSubscriber projects.

Summary
.NET Services supports three features that persist objects programmatically in the Azure Fabric: the .NET
Workflow Service and the .NET Service Bus’s queues and routers. .NET Services also provides .NET
Services Portal pages to manage workflow types and instances of types; queues and routers don’t have a
management UI as of the March 2009 CTP.

The Windows Azure Platform’s Workflow Service (WFS) page describes the service: ‘‘The Workflow
Service is a high-scale host for running workflows in the cloud. It provides a set of activities optimized
for sending, receiving, and manipulating HTTP and Service Bus messages; a set of hosted tools to deploy,
manage and track the execution of workflow instances; and a set of management APIs. Workflows (WFs)
can be constructed using the familiar Visual Studio 2008 Workflow Designer.’’ The electronic version

311

Part III: Tackling Advanced Azure Services Techniques

of the chapter will demonstrate how to create and run WFS solutions, as well as analyze the code and
messages to create WFs with the workflow management APIs.

As developers began testing the SB, it became apparent that two additional features were required to
adapt the SB to the Windows Azure environment: Service Bus Queues (SBQs) to persist messages for
asynchronous delivery and Service Bus Routers (SBRs) to enable message routing to more than one
listener and even. Routers implement a composable publish/subscribe model for messages from selected
senders. Subscribers can add a queue to ensure that messages aren’t lost when a listener goes offline
temporarily. The last half of this chapter demonstrated SBQs and SBRs with RESTful HTTP messaging.
The .NET Services SDK installs queue and router sample solutions that wrap messages in SOAP 1.1/1.2
envelopes also.

312

In
de

x

Index

A
*aaS, 13. See also Everything as

a Service
‘‘Above the Clouds: A Berkeley

View of Cloud Computing’’
whitepaper, 55

Access Control Services (.NET
Access Control Services,
ACS), 39. See also Service
Bus

in Azure Platform diagram, 6, 20
CardSpace information card and,

259–271
defined, 239–240, 271
.NET Services solution and,

240–242, 271
online information, 39

Access Control solutions/Relying
Parties/Service Requesters
interactions, 259

AccountName, for cloud storage,
29

AccountSharedKey, 29
ACE (Authority-Container-Entity)

model, xxii, 41. See also EAV
tables

Acer Aspire One, 9
ACID (atomic, consistent,

isolated, durable), 29, 30,
193. See also Entity Group
Transactions

ACS. See Access Control Services
Action (LoginStatus property),

180
Active Directory Federation

Services (ADFS), 43, 175,
243, 244, 271, 273,
274

Geneva Server and, xxv, 244
ADFS. See Active Directory

Federation Services
ADO.NET Data Services (formerly

Project Astoria), xxii,
68

Advanced Encryption Standard.
See AES

AES (Advanced Encryption
Standard), 135–136

encrypting/decrypting strings
with, 136–143

AesManaged encryption class,
135, 136, 137

method for decrypting an
encrypted string with the
AesManaged encryption
class (Listing 5–11),
140–141

method for encrypting plaintext
UTF8 string with
AesManaged encryption
class (Listing 5–8),
136–137

Affinity Group, 21, 65
AJAX

AJAX-enabled ASP.NET Web
pages, 221

extensions group, 183
RPC method and, 229
Thumbnails2.sln and, 221, 222
Update Panel, 221

ALFKI entity, 137, 138
allowInsecureRemoteEndpoints

setting, 161, 169
Amazon Machine Images (AMIs),

12, 13
Amazon Web Services (AWS)

Azure v ., 30, 51, 115
cloud computing and, xxi, 4, 18
Cloud Status and, 12
EC2, xxi, 4, 5, 11, 18, 115

availability, 117
egress/ingress costs, 227
IaaS and, xxi, 61
Oracle and, 13
Rackspace Hosting and, 11
S+S, 12
start of, xxi
uptime, 117
virtualized runtime application

platform, 13
Windows Server 2003 R2/ SQL

Server 2005 support, 41
Elastic Block Store, 11, 12, 13,

18
IaaS and, 12
PaaS and, 18
RightScale and, 12, 51
S3, 12, 18

AMIs/EBS snapshot backups
and, 12

availability, 117

egress/ingress costs, 227
FaaS and, 13
IaaS and, xxi
outages, 117
Rackspace Hosting and, 11
start of, xxi
uptime, 117

SimpleDB
DBaaS and, 12
EAV tables and, 12, 29, 111,

187
FaaS and, 13

UCI and, 17
Amazon.com. See also Amazon

Web Services
CAP Theorem and, 30
MSN TV 2 and, 9
PaaS and, 18
security and, 150

American Recovery and
Reinvestment Act (ARRA),
121, 123

AMIs (Amazon Machine Images),
12, 13

Analysis Services (SQL Analysis
Services), 5, 6, 20, 40

AOL-TV, 8
App.config file

(WSHttpRelayEchoSam-
ple.sln)

Listing 10–8, 286–287
Listing 10–9, 293–294

Application as a Service, 12. See
also SaaS

Application ID, 42, 43, 44, 175,
176, 179, 184, 186

application service providers
(ASPs), 7, 10. See also SaaS

ApplicationUserID, 180
ApproximateCount() (Message-

Queue.ApproximateCount),
215

ARRA (American Recovery and
Reinvestment Act), 121,
123

ASP.NET
login controls, 152
Security Forum, 152
session state management,

169

ASP.NET Membership Services

ASP.NET Membership Services,
151–169, 186

AspProviders.dll class library,
161–169, 186

functions of, 152
integrating, with WebRole project,

170–175, 186
‘‘Introduction to Membership’’

online help topic, 151
‘‘ASP.NET Profile Properties

Overview’’ online help topic,
152

ASP.NET Providers Sample:
ASP.NET Application
Providers for Windows Azure
page, 153

AspProviderDemo.sln, 186
Default.aspx, 153, 154, 171,

172, 173, 174, 175, 176,
177, 181, 182, 186

integration, with
AzureTableTestHar-
nessSSL.sln, 170,
175–186

membership-related forms
ChangePassword.aspx, 170,

172, 186
CreateNewWizard.aspx, 153,

170, 172, 186
Login.aspx, 170, 173, 174,

186
ManageRoles.aspx, 154, 170,

172, 186
MyProfile.aspx, 166, 170, 171,

186
MySession.aspx, 170, 172,

186
moving data source to cloud,

169
running locally, 153–156
service configuration settings for

remote storage endpoints
(Listing 6–7), 169

ServiceConfiguration.cscfg file
Listing 6–5, 160–161
settings for secure HTTPS

transport of Azure Tables
and Blobs, 169

user’s DbAdmin role assignment
properties (Listing 6–6),
163–164

web.config file
Azure-specific membership

elements in, 158–161
membership section

(Listing 6–1), 158
optional data services/default

settings
(Listing 6–3/6–4), 160

role manager/profile/session
state sections
(Listing 6–2), 159

working with, 157–158
AspProviders Sample, 25
AspProvidersDemo.sln, 25, 153,

165
AspProviders.dll class library,

161–169, 186
TableStorageMembershipProvider

class, 161–162, 163
TableStorageProfileProvider

class, 164–165, 167
TableStorageRoleProvider class,

162–164, 165
TableStorageSessionProvider

class, 165–169
ASPs (application service

providers), 7, 10. See also
SaaS

associated entities, 190–193
Astoria project. See ADO.NET

Data Services
Asus Eee PC, 9
Atom (standard), 21, 39
Atom CPUs, 9
Atom feeds, 283, 284, 285, 294
Atom Syndication Format, 68
atomic, consistent, isolated,

durable. See ACID
AtomPub (Atom Publishing

Protocol), 21, 39, 40, 68,
79, 80, 83, 84, 190, 194,
196

AT&T, 9
auditability, 55, 116
audits. See compliance; ISO/IEC

27001:2005 standard; SAS
70 attestations

authentication/authorization. See
Access Control Services;
ASP.NET Membership
Services; Windows Live ID
authentication

Authentication.cs, 72
Authority-Container-Entity (ACE)

model, xxii, 41. See also EAV
tables

authorization/authentication. See
Access Control Services;
ASP.NET Membership
Services; Windows Live ID
authentication

autogenerated scope
(WSHttpRelayEchoSam-
ple.sln),
290–292

AutomaticRenewal, 287
availability

FC, 57–58

high, 57, 60. See also Fabric
Controller

maximizing, 117
obstacle, 17, 55, 61, 116

AWS. See Amazon Web Services
Azure (Windows Azure). See also

Azure OS; Azure Platform
Access Control Services. See

Access Control Services
Application Templates for Visual

Studio. See templates
auxiliary Cloud Services. See

Cloud Services
Blob Services. See Blob Services
blobs. See blobs
Cloud Fabric. See Cloud Fabric
Community Technical Previews.

See CTPs
Developer Portal. See Developer

Portal
Development Fabric. See

Development Fabric
Development Storage. See

Development Storage
Fabric Controller. See Fabric

Controller
Hosted Projects, 43, 47, 185
Hosted Services. See Hosted

Services
Live Operating Environment, 6,

20, 48
Live Services. See Live Services
Log Viewer, 103–104
Management Tools, 243
.NET Services. See.NET Services
Queue Services. See Queue

Services
Queues. See queues
SDK. See SDK
Service Training Kit, 243
SLA, 55
SQL Services. See SQL Services
Storage Accounts. See Storage

Accounts
Storage Services. See Storage

Services
Table Services. See Table

Services
tables. See tables
Tools for Visual Studio, xxiv, 5,

22, 24, 27, 35, 51. See
also Visual Studio

Web Cloud Services. See Web
Cloud Services

Workflow Services. See Workflow
Services

Azure OS (Windows Azure
operating system), 5, 49–61

in Azure Platform diagram, 6, 20
infrastructure, 51–54
lifecycle of Azure service, 51–64

314

In
de

xBoolean

PDC 2008 and, 47
resources, description/

allocation, 50
security, 54–57
tour, 49–51
upgrades, 54

Azure Platform (Windows Azure
Platform)

architecture, 19–48
AWS v ., 30, 51, 115
Azure Services Platform v ., 5
benefits of, 42
component diagram, 6, 20
features, 6
GAE v ., 47, 51, 115
IBM v ., xxi
introduction, 3–111
moving to, risk minimization and,

115–150
PDC 2008 and, 47
purpose of, 20
Python and, 21, 51, 67
services in, 5–6
Sun Microsystems v ., xxi
uses for, 19

Azure service, lifecycle of, 51–64
‘‘Azure Table Storage Services

Test Harness’’ blog series,
29, 76, 81

AzureBlobTest application, 33, 94
Azure-hosted composite

application, 209
AzureStorageExplorer.sln, 161
AzureTableTestHarnessSSL.sln

project, 136–143, 150
client-side encryption v .

column-based server
encryption, 146–147, 150

decrypting ciphertext to plaintext,
139–142

Default.aspx page
customizing, 171–175
enabling special controls for

members of DbAdmins
and DbWriters roles
(Listing 6–9), 172–173

LinkButtons to emulate those
on AspProviderDemo
project’s Default.aspx
(Listing 6–8), 171–172

specifying Login.aspx as
default page in IIS 7.0
(Listing 6–10), 174–175

encrypting plaintext to ciphertext,
136–139

encryption/decryption in
TableStorageEntity
instance, 142–145

encryption’s performance hit,
145–146

integration, with
AspProviderDemo.sln, 170,
175–186

SampleWebCloudService project
and, 136

SSL page with a self-signed
certificate, 129

upgraded/chp 06 version, 170
copying/integrating

membership-related files,
170–171

customizing Default.aspx page,
171–175

B
BASE (basically available,

soft-state, eventual
consistency), 30

Base64Binary-encoded
representation, of
session-state blob, 167, 168

Base64Binary-encoded signature,
195

basically available, soft-state,
eventual consistency
(BASE), 30

batches, 193–194
Battlespace Awareness, 119
BigTable storage system (GAE),

13, 29. See also Google App
Engine

Binary, 30, 78
BinaryFormatter, 167
BizTalk Services, 39, 273. See

also Service Bus
Blob Services (Azure Blob

Services), 32–33, 94–111.
See also OakLeaf Systems
Azure Blob Services Test
Harness

in Azure Platform diagram, 6, 20
BlobContainer class diagram, 96
BlobContainerRest class diagram,

98
BlobProperties class diagram, 97
blobs (Azure Blobs), 94–111

AzureBlobTest application, 33,
94

code Listings
ASP.NET source code to open

the selected file in a new
window or display a file
download dialog
(Listing 4–25), 107

deleting (Listings 4–28 to
4–30), 108–110

download a file in 4,096-byte
chunks to a
MemoryStream and
upload it in 1MB blocks to

an Azure Blob Services
Container (Listing 4–20),
99–102

HTTP GET request for the
2.36MB bitmap blob from
Azure Blob Storage
(Listing 4–26), 107

HTTP GET request for uploading
a 2.36MB public bitmap
blob from Windows Live
SkyDrive (Listing 4–21),
104

HTTP GET response for the
2.36MB bitmap blob from
Azure Blob Storage
(Listing 4–27), 107–108

HTTP GET response for
uploading a 2.36MB
public bitmap blob from
Windows Live
SkyDrive(Listing 4–22),
105

HTTP PUT request to upload a
1MB block of the 2.36MB
bitmap blob to Azure Blob
Storage(Listing 4–23),
106

HTTP PUT response for a 1MB
block of the 2.36MB
bitmap blob uploaded to
Azure Blob Storage
(Listing 4–24), 106

content types, 95–96
Copy Blob, 109–110
defined, 63, 111
deleting, 108–109
downloading

with HTTP GET method,
104–105

selected blob, 106–108
Get Blob, 109–110
late changes to, 110–111
log blobs

persisting to containers, 103
viewing with utilities, 103–104

REST API and, 25, 33, 48
retrieving/storing, 94–111
session-state,

Base64Binary-encoded
representation of, 167, 168

storing/retrieving, 94–111
unstructured data, 27
uploading, to Storage Services,

106
BlobStorage class diagram, 96
BlobStorage.cd, 96, 97
BlobStorage.cs, 72
BlobStorageEndpoint, 29
BlobStorageRest class diagram,

98
Boolean, 78, 85, 167, 180

315

Boolean operators

Boolean operators, 86
Brewer, Eric, 30, 188
Brewer’s conjecture, 30, 188
btnDeleteAll_Click event handler,

201
btnLoadOrders_Click event

handler, 197
bubble, dot-com, 10, 11
bugs in large distributed systems,

116
Build Events page, 44
buildall.cmd, 24
business interruption risk, SLAs

and, 149
Butrico, Maria, 13, 14
bypassing obstacles, to cloud

computing, 116–127
Byte, 167
byte arrays, 95. See also blobs

C
C# WebAuth web site

added to IIS 7.x’s Default Web
Site, 177

sign-in status, 178
sign-out status, 180

C# wrappers, for RESTful
storage/authentication
operations, 70–72

CaaS (Computing as a Service),
12

in five-layer cloud computing
model, 14

Verizon and, xxi
California Senate Bill 1386 (SB

1386), 123, 126, 150
CAP Theorem, 30, 188
Cardholder Information Security

Program (CISP), 16
CardSpace (Windows CardSpace),

xxv
CardSpace information card

(Windows CardSpace
information card), 244–270

ACS and, 259–271
creating, 244–259
EchoService and, 266–270
HTTP request and response

messages (Listings 9–1 to
9–2), 249–257

Information Card terminology,
257–259

Service Requesters/Access
Control solutions/Relying
Parties interactions, 259

WSHttpRelayEchoSample.sln
and, 288–290

Carrara, Gianpaulo, 56
Carroll, Lewis, 16

CAS (Code Access Security), 20,
51

Cascading Style Sheet (CSS)
styles, 186

case sensitive user names, 153
CCIF (Cloud Computing

Interoperability Forum), 15,
17

CCIF Google Group, 59
certificate issuer, Trusted Root

Certificate Authorities List
and, 132–134

Certificates dialog (IE 8), 131,
132, 133, 150

ChangePassword, 152
ChangePassword.aspx, 170, 172,

186
changesets, 193
changing http to https, 130, 150
Char, 167
Chrome, Google, 9
Circuit City, 9
CISP (Cardholder Information

Security Program), 16
Claim, 258
Claims Configuration Page, 246,

248
claims transformation rules,

261–264
Classmate PC design, 9
Clear() (MessageQueue.Clear()),

215
client wrapper class libraries,

Web Cloud Services and, 37
ClientServices library, 195
client-side encryption,

column-based server
encryption v., 146–147, 150

Cloud Application Layer, 14
cloud computing, 3–18

‘‘Above the Clouds: A Berkeley
View of Cloud Computing’’
whitepaper, 55

Amazon Web Services. See
Amazon Web Services

ancestry, 7–11
benefits of, 7
components, 15
composable systems and, 11
concerns. See obstacles
‘‘Defining the Cloud Computing

Framework’’ blog post, 15
definitions, 3–5
Department of Defense and, 119
EaaS and, 11–13, 18
five-layer ontological model,

14–15
government agencies and, 119,

150
growth, 18

highly composable systems and,
11

Microsoft’s competitive edge in,
xxii

military and, 119
obstacles. See obstacles
ontologies, 14–16
‘‘Perspectives on Cloud

Computing and Standards,’’
17

popularity, xxi, 3–5, 7
‘‘The Potential of Cloud

Computing,’’ xxi, xxii
security and. See security
security-intensive agencies and,

119
’’Toward a Unified Ontology of

Cloud Computing’’ research
paper, 13, 14

Cloud Computing Interoperability
Forum (CCIF), 15, 17

Cloud Computing Interoperability
Forum Google Group, 59

‘‘Cloud Computing’s Big Bang for
Business,’’ xxi

‘‘Cloud Control’’ article, 16
Cloud Fabric (Azure Cloud Fabric),

44–47
cloud governance, 16–18
cloud hosting, 11
Cloud Services (Azure auxiliary

Cloud Services), 38–42. See
also Live Operating
Environment; Live Services;
.NET Services; SQL Services

in Azure Platform diagram, 6, 20
Cloud Software Environment

Layer, 14–15
Cloud Software Infrastructure, 14
Cloud Status, 12. See also

Amazon Web Services;
Google App Engine

Cloud-Book computer, 9
CloudDrive Sample, 25
CLR (Common Language

Runtime)
objects, 67, 111
support, 15, 41

Code Access Security (CAS), 20,
51

code Listings. See specific code
Listings

Cohen, Reuven, 17, 59
colocation facilities, 11
column-based server encryption,

client-side encryption v.,
146–147, 150

Committee of Sponsoring
Organizations of the
Treadway Commission
(COSO) framework, 121

316

In
de

xDevelopment Fabric UI (DFUI)

Common Language Runtime. See
CLR

Common Operating Picture, 119
Community Technical Previews.

See CTPs
comparison operators, 86
compliance (regulatory

compliance), 119–127
California Senate Bill 1386, 123,

126, 150
data privacy laws

(Massachusetts/Nevada),
126–127

GLBA, 119, 120, 148, 149, 150
HIPAA, xxiv, 16, 18, 116, 119,

121–123, 147, 148, 149,
150

HIT, 121, 123
PCC-DSS, 124–126, 150
SOX, 18, 119, 120–121, 147,

148, 149, 150
composable systems and, 11
Compute Only Live Services:

Existing APIs account, 21
Computer Security Division’s

Computer Security Resource
Center Publications page, 18

Computer Security Resource
Center Publications page,
Computer Security
Division’s, 18

Computing as a Service. See
CaaS

confidentiality (data
confidentiality), 16, 17, 29,
55, 116, 120, 123, 148,
259, 280, 293. See also
obstacles

Confidentiality (Information Card
term), 259

consistent (ACID), 29, 30, 193
Consumer, 300, 301
ContainerProperties class

diagram, 97
ContextRef, 73, 74
Copy Blob, 109–110
COSO (Committee of Sponsoring

Organizations of the
Treadway Commission)
framework, 121

create, retrieve, update, delete
operations. See CRUD
operations

create, update, delete operations.
See CUD operations

CreateNewWizard.aspx, 153,
170, 172, 186

CreateOnceContainerAndQueue(),
224

createtables.cmd, 24
CreateThumbnail(), 224

CreateUserWizard, 152
Cristofor, Laurentiu, 147
CRM (customer relationship

management)
Microsoft Dynamics CRM

Services, 6, 10, 12
Salesforce.com and, xxi, 10
specialty ASPs and, 10

CRUD (create, retrieve, update,
delete) operations, 71, 93,
108, 111, 142, 145, 150,
195

CryptoStream, 135
CryptoStream.Clear(), 137
CSS (Cascading Style Sheet)

styles, 186
CTPs (Azure Community Technical

Previews), 21
GUID tokens, 21, 23, 47
invitation codes, 38, 42, 47, 48

CUD (create, update, delete)
operations, 193–194. See
also CRUD operations

CustomerDataModel
class, 76, 142
members (Listing 5–14),

encryption/decryption of,
142–145

Cyber Network Defense, 119

D
Da Silva, Dilma, 13, 14
DaaS (Data Storage as a Service),

11, 12, 13, 14, 18, 40
data availability. See availability
data confidentiality. See

confidentiality
data egress (downloaded

response messages) costs,
15, 187, 227

Data Encryption Standard. See
DES

Data Hubs (online chapters), xxii,
xxv, xxvi, 41, 48, 63

data ingress (uploaded request
messages) costs, 15, 187,
196, 227

Data Protection Application
Programming Interface
(DPAPI) security, 136, 273

Data Service Query, 86
Data Storage as a Service (DaaS),

11, 12, 13, 14, 18, 40
data transfer bottlenecks, 116
databases. See RDBMSs; SADB;

tables
DataGridView control, 205–208.

See also GridView control
filling a DataGridView control with

a specified number of the

most recent parent entities
(Listing 7–9), 205–206

filling a DataGridView control with
the child entities of a
selected parent entity
(Listing 7–10), 207–208

DataServiceUtilities, 73
DataStore (GAE), 12, 111. See

also Google App Engine
DateTime, 30, 78, 167
dbo.Membership, 157
dbo.Roles, 157
dbo.Sessions, 157
Decimal (data type), 167
decryption. See encryption
dedicated server hosting, 11
dedicated virtual server hosting,

11, 15
Default.aspx page

AspProviderDemo.sln, 153, 154,
171, 172, 173, 174, 175,
176, 177, 181, 182, 186

AzureTableTestHarnessSSL.sln
project, 171–175

‘‘Defining the Cloud Computing
Framework’’ blog post, 15

DELETE, 30, 48, 93, 94, 109,
213, 220

DeleteMessage (Message-
Queue.DeleteMessage),
215

DeleteQueue(), 212
Dell Inspiron Mini, 9
denial of service attacks, 116
Department of Defense, cloud

computing and, 119
DES (Data Encryption Standard),

135
DESCryptoServiceProvider, 135
DetailTable sample project. See

OrderDetailTable sample
project

DetailType. See OrderDetailTable
sample project

Developer Portal (Azure Developer
Portal), 21–23

hosted project
Build Events page, 44
SSL page, 44
Summary page, 43

publishing projects to, 42–44
purpose of, 48

Development Fabric (DF),
25–26

in Azure Platform diagram,
6, 20

SDK and, 23, 48
self-signed certificate for,

131–132
Development Fabric UI (DFUI),

26

317

Development Storage (DS)

Development Storage (DS),
27–34. See also Storage
Services

in Azure Platform diagram, 6, 20
SDK and, 23, 48

Development Storage UI (DSUI),
27, 30

DF. See Development Fabric
DFAgent.exe, 25
DFLoadBalancer.exe, 25
DFMonitor.exe, 25
DFService.exe, 25
DFUI (Development Fabric UI), 26
Digest (Information Card term),

259
Digital Identity, 258
diskless workstations, 7–8
Disks

FC, 57, 58
Hyper-V hypervisor, 58, 59

DisplaySearch, 10
DistributedSort Sample, 25
Django framework, 13. See also

Google App Engine
dot-com bubble, 10, 11
Double, 30, 79, 167
downloaded response messages.

See data egress costs
DPAPI (Data Protection

Application Programming
Interface) security, 136, 273

DropBox, 11
DS. See Development Storage
DSUI (Development Storage UI),

27, 30
durable (ACID), 29, 30, 193
Dynamics CRM Services, 6, 10,

12

E
EaaS. See Everything as a Service
EAV (Entity-Attribute-Value)

tables. See also SADB;
tables

ACE model and, xxii, 41
GAE and, 13, 29, 111, 187
SADB and, xxv
SimpleDB and, 12, 29, 111, 187

EBS (Elastic Block Store), 11, 12,
13, 18. See also Amazon
Web Services

EC2 (Elastic Computing Cloud),
xxi, 4, 5, 11, 18, 115. See
also Amazon Web Services

availability, 117
egress/ingress costs, 227
IaaS, xxi, 61
Oracle and, 13
Rackspace Hosting and, 11
S+S, 12

start of, xxi
uptime, 117
virtualized runtime application

platform and, 13
Windows Server 2003 R2/ SQL

Server 2005 support by, 41
EchoContract.cs, 276–278
EchoSample solution

(EchoService.sln), 276–285,
294. See also
WSHttpRelayEchoSample.sln

analyzing, 276–285
consuming (Listing 10–6),

282–286
inspecting EchoCon-

tract.cs/EchoService.cs/Program.cs
(Listings 10–1 to 10–4),
276–278

making services publicly
discoverable (Listing 10–7),
283–285

verifying service user’s
credentials with code
(Listing 10–5), 278–281

WSHttpRelayEchoSample.sln v .,
286–287

EchoService.cs, 276–278
EchoService.sln. See EchoSample

solution
Eclipse tools, 13, 21, 51
EDI (electronic data interchange),

16
Edit Profile Information/Manage

Relying Party Policies page,
247

egress costs. See data egress
costs

EGTs. See Entity Group
Transactions

EHRs (electronic health records),
121, 123

Elastic Block Store (EBS), 11, 12,
13, 18. See also Amazon
Web Services

electronic data interchange (EDI),
16

electronic health records (EHRs),
121, 123

Ellis, Nigel, 187
Ellison, Larry, 8
‘‘Enabling SSL Connections on

Windows Azure’’ whitepaper,
131

encryption
client-side encryption v .

column-based server
encryption, 146–147, 150

code for encrypting and
decrypting
CustomerDataModel

members (Listing 5–14),
142–145

‘‘Database Encryption in SQL
Server 2008 Enterprise
Edition’’ technical article,
147

decrypting ciphertext to plaintext,
139–142

encrypting plaintext to ciphertext,
136–139

encryption/decryption in
TableStorageEntity
instance, 142–145

HTTP request headers and
payload to add an encrypted
entity to the OakLeaf3 table
(Listing 5–9), 138

HTTPS protocol and, 127–135,
150

method for decrypting an
encrypted string with the
AesManaged encryption
class (Listing 5–11),
140–141

method for encrypting plaintext
UTF8 string with
AesManaged encryption
class (Listing 5–8),
136–137

performance hit, 145–146
PII in Storage Services, 135–147
response headers and payload

from adding an encrypted
entity to the OakLeaf3 table
(Listing 5–10), 138–139

‘‘SQL Server 2008: Transparent
data encryption feature - a
quick overview’’ blog post,
147

‘‘SQL Server 2008 TDE:
Encryption You Can Use!’’
blog post, 147

TDE, 147, 150
enterprise ASPs, 10
Enterprise Service Bus (ESB)

model, 39, 273–274, 294.
See also Service Bus

entities (Azure tables), 80–94.
See also tables

adding with code, 81–82
adding with HTTP POST, 83–85
associated, 190–193
deleting (Listings 4–17 to 4–19),

93–94
primary key values for, 187–190
querying, 85–90
as unit (for tables), 69
updating (Listings 4–14 to

4–16), 90–92

318

In
de

xgrids

Entity Group Transactions (EGTs),
85, 109, 193–194. See also
ACID

ACID v ., 193
code to add the minimum table

version header to support
EGTs (Listing 7–4), 194

requirements for, 193
Entity-Attribute-Value tables. See

EAV tables
Errors.cs, 72
ESB (Enterprise Service Bus)

model, 39, 273–274, 294.
See also Service Bus

EU Directive 95/46/EC, 120,
123

EU Safe Harbor regulations,
149

Everex, 9
Everything as a Service (EaaS),

11–13, 18
cloud computing and, 11–13,

18
defined, 13
HP and, 13

Execute . . . () methods, 90
Exodus Communications, 11
‘‘Exploiting SQL Azure Database’s

Relational Features’’ (online
chapter), xxii, xxv, xxvi, 41,
48, 63

F
FaaS (Files as a Service), 11, 12,

13, 14, 18, 40
Fabric. See Cloud Fabric;

Development Fabric
Fabric Controller (FC, Azure

Fabric Controller), 57–58
availability, 57–58
diagram, 57
load balancing and, 49, 50, 51,

53, 60, 209
role of, 49, 50–51, 60

Failure Domains, 51, 52, 53, 60,
63, 111, 188

‘‘Fast, Scalable, and Secure
Session State Management
for Your Web Applications’’
article, 169

fate sharing/ reputation, 116
Fault Domains. See Failure

Domains
FC. See Fabric Controller
FC Core, 57
Federal Cloud Infrastructure,

17
Federal Information Processing

Standard (FIPS), 118, 135

FederatedIdentity.net. See also
CardSpace information card;
Identity Lab

claims transformation rules and,
261–264

oakleaf-acs solution and,
260–266

as Recognized Token Issuer,
260–261

Relying Party and, 247, 250,
264–266

FederatedIdentity.pfx certificate,
249

Fiddler2, 68–71, 79, 128, 141,
227, 230, 293, 300

Files as a Service (FaaS), 11, 12,
13, 14, 18, 40

FIPS (Federal Information
Processing Standard), 118,
135

firewalls, 18, 54, 116, 124, 273,
275, 294, 296, 301, 307

Firmware as a Service. See HaaS
Firmware/Hardware layer, 14, 15
FISMA, 18, 119, 149
500 (Internal Server Error), 300
five-layer cloud computing model,

14–15
flexible properties feature (Azure

tables), 188, 191, 208
Flexiscale, 12
flow diagrams,

Thumbnails_WebRole and
Thumbnails_WorkerRole
projects

Thumbnails2.sln (modified
project), 231, 232

Thumbnails.sln (original project),
222, 223, 231, 232

Force.com. See Salesforce.com
Foreign Corrupt Practices Act,

120
400 (Bad Request), 300
403 (Forbidden), 300
409 (Conflict), 300
415 (Unsupported Media Type),

300
Fratto, Mike, 16

G
GAE. See Google App Engine
Gartner, 3, 8, 9, 13
‘‘Geneva’’ Beta 2, 239, 243–244,

273
Geneva CardSpace. See

CardSpace
Geneva Framework. See Windows

Identity Foundation

Geneva Server. See Active
Directory Federation
Services

‘‘Geneva’’ Team Blog, 244
geolocation services, 21, 27,

118, 153, 189
Get Blob, 109–110
GET method. See HTTP GET
GetHealthStatus(), 224
GetMessages (Message-

Queue.GetMessage[s]),
215

GetPhotoGalleryContainer(), 224
GetQueue(), 212
GetThumbnailMakerQueue(), 224
GLBA. See Gramm-Leach-Bliley

Act
GoGrid, 12, 18
Golden, Bernard, 117
Google App Engine (GAE)

Azure v ., 47, 51, 115
BigTable storage system and,

13, 29
Cloud Application Layer and, 14
Cloud Status and, 12
DataStore, 12, 111
Django framework and, 13
EAV tables and, 13, 29, 111,

187
Google Trends service and, 4
Java and, xxi
outages, 117
PaaS, xxi, 18
Python and, xxi, 13, 14, 15, 59
SLAs, 117
as specialty ASP, 10
TaaS and, 13
virtualized runtime application

platform and, 13
webapp framework and, 13

Google.com
CAP Theorem and, 30
Chrome, 9
Schmidt and, 3, 4
Trends service, 4

governance, cloud, 16–18. See
also obstacles

government agencies, cloud
computing and, 119, 150

Gramm-Leach-Bliley Act (GLBA),
119, 120, 148, 149, 150

Grance, Tim, 118
Green, Frederick, 148
grids

displaying child entities,
207–208

displaying data from
heterogeneous tables in,
205–208

displaying parent entities,
205–206

319

GridView control

GridView control, 33, 85, 86
AES and, 136
deleting a blob

with code (Listing 4–28),
108–109

with HTTP delete request
(Listing 4–29,
Listing 4–30), 109

Page_Prerender event handler
and, 174

testing effect of disabling
ViewState (Listing 8–25),
227–228

12-entity pages for (Listing 4–8),
86–88

Group custom claim, 264
GTE CyberTrust Global Root

authority, 131
guest OS (Hyper-V hypervisor),

58, 59
guest partitions (Hyper-V

hypervisor), 58, 59
guest VMs, 49, 50, 53, 58, 59
GUID (data type), 30, 79, 167
GUID tokens, 21, 23, 47
Guthrie, Scott, 131
gvBlobs GridView, 231–233

H
HaaS (Hardware as a Service),

14, 15, 18
Hardware as a Service (HaaS),

14, 15, 18
hash-based message

authentication code. See
HMAC

Health Information Technology
(HIT), 121, 123. See also
HIPAA

Health Information Technology for
Economic and Clinical Health
Act (HITECH Act), 123

Health Insurance Portability and
Accountability Act. See
HIPAA

HelloFabric Sample, 25
HelloWorld Sample, 25
hexadecimal Application ID. See

Application ID
high scalability, 63
‘‘high-level .NET wrappers,’’ 71
highly composable systems, 11
high-scale host, 40, 311. See also

Workflow Services
HIPAA (Health Insurance

Portability and
Accountability Act), xxiv, 16,
18, 116, 119, 121–123,
147, 148, 149, 150

HIT (Health Information
Technology), 121, 123. See
also HIPAA

HITECH Act (Health Information
Technology for Economic and
Clinical Health Act), 123

HMAC (hash-based message
authentication code), 146

HMAC-SHA256 algorithm, 80,
195, 212

HolaServers, 12
host OS (Hyper-V hypervisor), 58,

59
host partition (Hyper-V

hypervisor), 58, 59
host VMs (host virtual machines),

49, 50, 53, 58
hosted project (Developer Portal)

Build Events page, 44
SSL page, 44
Summary page, 43

Hosted Projects (Azure Hosted
Projects), 43, 47, 185

Hosted Service tokens, 64–67,
95. See also Storage
Accounts

Hosted Services (Azure Hosted
Services), 21, 22, 29, 48, 57

HP
EaaS and, 13
Mini, 9
Netbooks and, 9
NetPC and, 8

HRMS (human resources
management system), 10

HTTP
debugging. See Fiddler2
DELETE, 30, 48, 93, 94, 109,

213, 220
MERGE, 30, 48, 69, 70, 90, 91,

92
PUT, 30, 48, 212–213
queues and, 209
request/response headers and

content, 68–70
HTTP GET, 30, 32, 33, 40, 48.

See also blobs
downloading blobs with,

104–105
querying entities (Listings 4–9 to

4–13), 88–90
request for the 2.36MB bitmap

blob from Azure Blob
Storage (Listing 4–26), 107

request for uploading a 2.36MB
public bitmap blob from
Windows Live SkyDrive
(Listing 4–21), 104

response for the 2.36MB bitmap
blob from Azure Blob

Storage (Listing 4–27),
107–108

response for uploading a
2.36MB public bitmap blob
from Windows Live
SkyDrive(Listing 4–22), 105

HTTP POST, 30, 40, 48
entities added to tables (Listings

4–6 to 4–7), 83–85
request and response messages

for creating RouterPolicy
instance (Listing 11–8),
310–311

request to insert an entity from
the Northwind Orders table
(Listing 7–5), 194–195

response after uploading an
entity from the Northwind
Orders table (Listing 7–6),
195–196

table creation with, 79–80
HTTP PUT

request and response messages
to create a queue named
‘‘thumbnailmaker’’
(Listing 8–3), 212–213

request to upload a 1MB block of
the 2.36MB bitmap blob to
Azure Blob
Storage(Listing 4–23), 106

response for a 1MB block of the
2.36MB bitmap blob
uploaded to Azure Blob
Storage (Listing 4–24), 106

HTTP request and response
messages

with 10 thumbnail images with
partial ViewState contents
(Listing 8–23,
Listing 8–24), 225, 226

to add a simple string message
to the ‘‘thumbnailmaker’’
queue (Listing 8–9), 216

to add three metadata properties
to the ‘‘thumbnailmaker’’
queue, 214

for adding a thumbnail image
with the GridView’s
ViewState turned off
(Listing 8–25), 227–229

CardSpace information card
(Listings 9–1 to 9–2),
249–257

to clear all messages from the
queue (Listing 8–20), 220

to delete a queue named
‘‘thumbnailmaker’’
(Listing 8–5), 213–214

to delete a single message
having the designated

320

In
de

xLawrence, Eric

PopReceipt value
(Listing 8–18), 220

generated by WorkerRole polling
(Listing 8–26,
Listing 8–27), 230,
233–234

to inspect, rather than process, a
single message
(Listing 8–16), 219

for a list of the oakleaf3
account’s queues
(Listing 8–1), 211–212

to retrieve a single message
from the selected queue
(Listing 8–13), 217–218

to retrieve the approximate
number of messages in a
queue (Listing 8–11),
216–217

HttpPushSubscriber, 306
HTTPQueueSample solution,

300–306, 309
exploring code (Listings 11–5 to

11–6), 302–306
projects in, 300–301
test-driving, 300–301

HTTP/REST. See also REST APIs
at message level, 215–221
at queue level, 212–215

HttpRouter.Publisher project
(Listing 11–7), 307–309

HttpRouter.sln solution, 306–311
HTTPS protocol

changing http to https, 130, 150
queues and, 209
with SSL encryption, 150
with TLS encryption, 127–135,

150
human resources management

system (HRMS), 10
Huron project. See Data Hubs
Hyper-V hypervisor

components, 58–59
design, principles of, 60
diagram of, 58
home page, 59
non-Microsoft data centers and,

59–60

I
IaaS (Infrastructure as a Service),

12. See also Amazon Web
Services

Amazon Web Services as, 12
EC2 and, xxi, 61
in five-layer cloud computing

model, 14
S3 and, xxi
virtualized runtime application

platform and, 13

IANA (Internet Assigned Numbers
Agency), 95

IBM
Azure v ., xxi
IBM T.J. Watson Research

Center, 13, 14
Network Stations, 8

IDC, 5, 13, 18, 55
Identity Foundation. See Windows

Identity Foundation
Identity Lab. See also

FederatedIdentity.net
Claims Configuration Page, 246,

248
Edit Profile Information/Manage

Relying Party Policies page,
247

Registration page, 245
Identity Protocols Security Token

Service (ipsts), 244. See
also Identity Lab

Identity Provider (IP), 258
Identity Provider Security Token

Service (IP/STS), 258
Identity Selector (IS), 258
IDisposable.Dispose, 137
IDLoginStatus control, 178–181
IDLoginView control, 178, 181
IE 8’s Certificates dialog, 131,

132, 133, 150
IEC. See ISO/IEC 27001:2005

standard
IETF RFC 2046, 95, 96, 129
IETF RFC 2988, 136
IETF RFC 4346, 129
IIS 7 (Internet Information

Services), 20, 24, 50, 59,
105, 131, 174, 176

IIS 7.5 Manager, 176
Information Card, 258
Information Card Model, 258
Information Card terminology,

257–259
Information Technology

Laboratory (ITL), 17, 18,
118, 150. See also NIST

InformationWeek magazine poll,
16

Infrastructure as a Service. See
IaaS

ingress costs. See data ingress
costs

input claims, 261
Instances count, 29
Int, 30, 79
Int16, 167
Int32, 167, 304
Int64, 167
Integration Services (SQL

Integration Services), 40, 80

Integrity (Information Card term),
259

interconnecting services with
.NET Service Bus. See
Service Bus

Internet Assigned Numbers
Agency (IANA), 95

Internet Information Services. See
IIS, 7

interoperability
CCIF, 15, 17
CCIF Google Group, 59
Identity Metasystem

Interoperability, 257
of Identity Protocols, 244
node, 17
standards, cloud computing and,

18
IntPtr, 167
‘‘Introduction to Membership’’

online help topic, 151
invitation codes, 38, 42, 47, 48
IP (Identity Provider), 258
iPhones, 9, 12
ipsts (Identity Protocols Security

Token Service), 244. See
also Identity Lab

IP/STS (Identity Provider Security
Token Service), 258

IronPython, 13, 67
IronRuby, 13
IS (Identity Selector), 258
ISO/IEC 27001:2005 standard,

xxiii, 55, 148–149, 150
isolated (ACID), 29, 30, 193
issuer of certificate, Trusted Root

Certificate Authorities List
and, 132–134

ITL. See Information Technology
Laboratory

IT-Related Risk, 117–118

J
JavaStations, 8
JungleDisk, 11

K
King Report on Corporate

Governance for South Africa,
120

Kubic, Chris, 119
Kundra, Vivek, 118

L
latency, 29
Lawrence, Eric, 68, 69

321

Liberate Technologies

Liberate Technologies, 8
lifecycle of Azure service, 51–54
Limog (LINQ in-Memory Object

Generator), 81, 190, 191
LINQ in-Memory Object Generator

(Limog), 81, 190, 191
LINQ SQO. See LINQ Standard

Query Operators
LINQ Standard Query Operators

(LINQ SQO), 31, 85
join, 189, 190
Take(n), 189, 208

LINQ to REST (LINQ to ADO.NET
Data Services), 68, 85, 88,
89, 111, 205

Linthicum, David, 13, 15
Linux, 8, 9, 13
ListContainersResult class

diagram, 98
listing queues, 211–212
Listings. See specific code

Listings
ListQueues() (Message-

Queue.ListQueues),
211

‘‘Litware HR on SSDS’’ tutorial
blog posts, 57

Live Operating Environment (LOE,
formerly MOE), 6, 20, 48

Live Services, 6, 21
in Azure Platform diagram, 6, 20
Live Framework: CTP, 21, 22, 35
Live Services: Existing APIs

projects, 21, 151, 175,
176, 183

LiveIDSampleCloudService.sln
project, 177, 181–186

load balancing
FC and, 49, 50, 51, 53, 60, 209
PartitionKey and, 187, 208
Service Bus and, 39

locality, Azure tables and, 188,
208

local-market ASPs, 10
lock-in, 16, 17, 18, 55, 59, 60,

61, 116. See also obstacles
Lodin, Bill, 103, 104
LOE (Live Operating Environment,

formerly Mesh Operating
Environment), 6, 20, 48

log blobs. See also blobs
persisting to containers, 103
viewing with utilities, 103–104

Log Viewer (Azure), 103–104
LoggedInLiveID, 180
Login (login control), 152
login controls, ASP.NET, 152
Login.aspx, 170, 173, 174, 186
LoginName, 152
LoginStatus, 152
LoginView, 152

London Stock Exchange
Combined Code, 120

Long (data type), 30, 79

M
MaaS (Monitoring as a Service),

12
magic strings, 67
MakeCert.exe, 131, 134, 135,

150
managed hosting, 11
Management Studio (SQL Server),

30, 31, 157
Management Tools, Azure, 243
ManageRoles.aspx, 154, 170,

172, 186
‘‘Managing Authorization Using

Roles’’ online help topic, 152
‘‘Managing SQL Azure Database

Accounts, Databases, and
Data Hubs’’ (online chapter),
xxii, xxv, xxvi, 41, 48, 63

Marx, Steve, 85, 110, 194, 222,
229–230

Massachusetts data privacy laws,
126–127

MasterCard’s Site Data
Protection program, 16

maximizing availability, 117
McNerney, Charlie, 55
Media Players, 9
Mell, Peter, 118
Member Service Providers

(MSPs), 16
MERGE, 30, 48, 69, 70, 90, 91,

92
mesh, 9
Mesh Operating Environment

(MOE), 6. See also Live
Operating Environment

Mesh services, 22, 35, 48
Message class, 210
message level, HTTP/REST at,

215–221
MessageQueue, 210
MessageQueue.ApproximateCount(),

215
MessageQueue.Clear(), 215
MessageQueue.DeleteMessage(),

215
MessageQueue.GetMessage[s](),

215
MessageQueue.ListQueues(), 211
MessageQueue.PeekMessage[s],

215
MessageQueue.PutMessage, 215
MessageReceivedEventHandler

delegate, 210

messages. See also HTTP request
and response messages;
queues; Service Bus

in queues, 209–235
adding, 215, 216
clear, 215, 220–221
delete, 215, 220
peek at, 215, 219
retrieve approximate number,

215, 216–217
retrieve single message, 215,

217–219
Service Bus and, 275–276
Service Bus Queues and, 294,

296–306, 312
Service Bus Routers and, 294,

306–311, 312
metalanguage (ML), 116, 117
Microsoft Dynamics CRM

Services, 6, 10, 12
Microsoft Exchange Online, 12
Microsoft Identity Lab. See

Identity Lab
Microsoft Live SkyDrive. See

SkyDrive
Microsoft Office Live, 12
Microsoft Secure Server

Authority, 130, 131
Microsoft SharePoint Online, 12
Microsoft Visual Studio. See

Visual Studio
migrating to Azure Platform, risk

minimization and. See risk
minimization

military, cloud computing and,
119

MIME (Multipurpose Internet Mail
Extension) types, 11, 34, 95

MIX 08 conference, 40
MIX 09 conference, 41, 187
ML (metalanguage), 116, 117
MOE (Mesh Operating

Environment), 6. See also
Live Operating Environment

Monitoring as a Service (MaaS),
12

Mosso division, 11. See also
Rackspace Hosting

moving to Azure Platform, risk
minimization and. See risk
minimization

MSN TV 2, 8, 9
MSPs (Member Service

Providers), 16
Multipurpose Internet Mail

Extension types. See MIME
types

multitenancy, 56–57
MyProfile.aspx, 166, 170, 171,

186
MySession.aspx, 170, 172, 186

322

In
de

xopen services

N
NAC (Network Access Control),

54
Nakashima, Jim, 72, 131
named byte arrays, 111
named pipes, 21
NAT (Network Address

Translation) devices, 273,
275, 294, 296, 307

National Bureau of Standards. See
NIST

National Institute of Standards
and Technology. See NIST

NC (Network Computer) concept,
xxiii, 7–8

NCI (Network Computers, Inc.), 8
Negroponte, Nicholas, 9
.NET 4, xxii, xxiii, xxv, 40, 271,

295. See also Workflow
Services

.NET Access Control Services.
See Access Control Services

.NET Client Library for ADO.NET
Data Services, 31

.NET CLR. See CLR

.NET primitive types, 167

.NET Service Bus. See Service
Bus

.NET Services, 5, 6, 38–40. See
also Access Control Services;
Service Bus; Workflow
Services

in Azure Platform diagram, 6, 20
purpose of, 48, 271
Workflow Services. See Workflow

Services
.NET Services SDK. See also

EchoSample solution;
WSHttpRelayEchoSample.sln

installing, 242–244
Service Bus and, 275–276

.NET Services solution
ACS and, 240–242, 271
Service Bus and, 274–275

Netbooks, 7, 9–10
NetChannel, 8
NetPC, 8
Network Access Control (NAC),

54
Network Address Translation

(NAT) devices, 273, 275,
294, 296, 307

Network Computer (NC) concept,
xxiii, 7–8

Network Computers, Inc. (NCI), 8
network interface cards (NICs),

58, 59
Network Stations (IBM), 8
‘‘The Network is the Computer’’

motto, 8

Nevada data privacy laws,
126–127

New Project dialog (Visual
Studio), 35, 178

‘‘New Storage Feature: Signed
Access Signatures’’ blog
post, 110

NICs (network interface cards),
58, 59

NIST (National Institute of
Standards and Technology)

AES and, 135
federal cloud computing

standards, 17–18,
118–119, 150

Federal Cloud Infrastructure,
17–18

ITL and, 17, 18, 118, 150
IT-Related Risk, 117–118
Special Publications, 18,

118–119, 123
node interoperability, 17
non-proprietary security features,

17, 18
Northwind Customer’s table, 30,

31, 42, 81, 136, 150, 189,
194. See also
AzureTableTestHarnessSSL.
sln project

Northwind Order Details table,
189, 190, 194, 204, 208

Northwind Orders table, 189, 194,
208. See also OrderTable
sample project

HTTP POST request to insert an
entity from the Northwind
Orders table (Listing 7–5),
194–195

HTTP POST response after
uploading an entity from the
Northwind Orders table
(Listing 7–6), 195–196

NumericType.MaxValue -
NumericPropertyValue
calculations, 189, 198, 208.
See also PartitionKey values;
RowKey values

O
OakLeaf CA, 128, 134, 135
OakLeaf Hosted Service, 80, 81
OakLeaf Systems Azure Blob

Services Test Harness, 33,
42

staging deployment of, 47
OakLeaf Systems Azure Table

Services Sample Project, 29
code, 31
Default.aspx page, 32

Northwind Customers table’s
records and, 42

object initialization code and,
42

production version, 31
structure, 31

OakLeaf3 table
HTTP request and response

messages for a list of the
oakleaf3 account’s queues
(Listing 8–1), 211–212

HTTP request headers and
payload to add an encrypted
entity to the OakLeaf3 table
(Listing 5–9), 138

request headers for the first 12
entities from the OakLeaf3
table (Listing 5–12), 141

response headers and payload
from adding an encrypted
entity to the OakLeaf3 table
(Listing 5–10), 138–139

response headers for the first of
12 encrypted Entities from
the OakLeaf3 table
(Listing 5–13), 141–142

oakleaf-acs solution, 260–266
Obama administration, 17, 118,

121, 123
OBAs (Office Business

Applications), 6, 10
object ID, 187, 188
object initialization code, 42
Object Model (FC), 57, 58
obstacles (to cloud computing),

16–18. See also risk
minimization

availability, 17, 55, 61, 116
bypassing, 116–127
data confidentiality/auditability,

55, 116
lock-in, 16, 17, 18, 55, 59, 61,

116
privacy, 16–18
security, 16–18, 55, 61, 116
‘‘Top 10 Obstacles for Growth of

Cloud Computing’’, 55,
116

octets, 96, 111, 259
Office Business Applications

(OBAs), 6, 10
Office Live, 12
OLPC (One Laptop per Child)

program, 9
One Laptop per Child (OLPC)

program, 9
online chapters/source code, xxii,

xxv, xxvi, 41, 48, 63
ontologies, cloud computing,

14–16
open services, 14

323

Oracle

Oracle
EC2 and, 13
NC concept, xxiii, 7–8
Sun Microsystems and, xxi

ORDER BY, 146
OrderDetailTable sample project,

189
associated entities, 190–193
code to define the

OrderDetailDataModel class
for the OrderDetailTable
child table (Listing 7–2),
191

code to define the
OrderDetailType class for
the OrderDetailTable child
table (Listing 7–3),
191–192

code to selectively delete
OrderTable and DetailTable
or OrderDetailTable entities
(Listing 7–8), 201–204

code to selectively upload
OrderType and DetailType or
OrderDetailType entities to
Azure Table(s) (Listing 7–7),
197–201

OrderDetailType. See
OrderDetailTable sample
project

OrderTable sample project, 189
associated entities, 190–193
code to define the

OrderDataModel class for
the OrderTable parent table
(Listing 7–1), 190–191

code to selectively delete
OrderTable and DetailTable
or OrderDetailTable entities
(Listing 7–8), 201–204

OrderType. See OrderDetailTable
sample project

output claims, 261
OX-1 model, 9
Ozmo, 12
Ozzie, Ray, xxi, xxii

P
P2P.wrox.com, xxvii
PaaS (Platform as a Service). See

also Amazon Web Services;
Google App Engine;
Salesforce.com

AWS, 18
in five-layer cloud computing

model, 14
GAE, xxi, 18
Salesforce.com, 14–15

Pace, Eugenio, 56, 57

packages, 25, 44, 45, 46
Page_Prerender event handler,

174
Page_PreRender() event handler,

224
‘‘Paging Over Data in Windows

Azure Tables’’ blog post, 85
Pallman, David, 161
ParameterValidator, 73
partition strategy, Azure tables

and, 187–190, 208
PartitionKey values, 30

choosing, 188–189
load balancing and, 187, 208
NumericType.MaxValue

–NumericPropertyValue
calculations, 189, 198, 208

partition strategy and, 187–190,
208

role of, 187
scalability and, 164, 187–190,

208
Password-Based Key Derivation

Function (PBKDF2), 136,
137, 140

PasswordRecovery, 152
Payment Card Industry (PCI), 16
PBKDF2 (Password-Based Key

Derivation Function), 136,
137, 140

PCAOB (Public Company
Accounting Oversight
Board), 121

PCC-DSS (Payment Card
Industry-Data Security
Standard), 124–126, 150

PCI (Payment Card Industry), 16
PCI SAQ, 125–126
PDC. See Professional Developers

Conference
PeekLockConsumer, 301
PeekMessages() (Message-

Queue.PeekMessage[s]),
215

performance unpredictability, 116
performance/scalability

optimization, of Azure tables,
187–208

perimeter security, 54
Perl, 175
Perry, Giva, 13
personally identifiable

information. See PII
PersonalWebSite Sample, 25
‘‘Perspectives on Cloud

Computing and Standards,’’
17

.pfx files, 132, 133, 135
PHI (Protected Health

Information), 122–123, 147

Photo Gallery Azure Queue
Services Test Harness, xxv,
34. See also
Thumbnails2.sln;
Thumbnails.sln

PHP, 21, 51, 67, 175
PII (personally identifiable

information), 123, 136, 137,
141, 142, 147, 150

encryption of, in Storage
Services, 135–147

PIPEDA, 149
pipes, named, 21
PKCS (Public-Key Cryptography

Standards), 136
PKI (Public Key Infrastructure),

135
Platform as a Service. See PaaS
PopReceipt value, 215, 218, 220
portal. See Developer Portal
POST. See HTTP POST
‘‘The Potential of Cloud

Computing,’’ xxi, xxii
PowerShell, 24, 25, 243
Primary Access Key, 66
primary key values, for entities,

187–190
primitive types, .NET, 167
privacy, 16–18. See also

compliance; confidentiality;
obstacles

private cloud, 12
Professional Developers

Conference (PDC)
2008, 5, 41, 47, 51
2009, 20, 50

profiles, ASP.NET role
management features and,
152–153

Program.cs
inspecting, 276–278
verifying service user’s

credentials and, 278–281
Project Astoria. See ADO.NET

Data Services
Project Huron. See Data Hubs
Project RedDog, 5
ProjectName.cspkg, 44, 45. See

also
ServiceConfiguration.cscfg file

Proof-of-Possession, 259
Protected Health Information

(PHI), 122–123, 147
Public Company Accounting

Oversight Board (PCAOB),
121

Public Company Accounting
Reform and Investor
Protection Act of 2002. See
Sarbanes-Oxley Act

324

In
de

xrequest headers from the OakLeaf3 table

Public-Key Cryptography
Standards (PKCS), 136

Publisher, 306
PUT, 30, 48, 212–213
Put Blob operation, 32
Put Message operation, 34
PutMessage (Message-

Queue.PutMessage),
215

Python
Azure and, 21, 51, 67
GAE and, xxi, 13, 14, 15, 59
Windows Live ID Web

Authentication SDK 1.2,
175

Q
query operators, 86
querying entities, 85–90
Queue Services (Azure Queue

Services), 33–34, 71,
209–235

in Azure Platform diagram, 6, 20
Photo Gallery Azure Queue

Services Test Harness, xxv,
34

Queue.cs, 72, 210, 212
QueueManagementClient class,

296–300
QueuePolicy class, 304–305
QueueProperties, 210
QueueRest, 210
queues (Azure Queues). See also

Service Bus Queues;
Thumbnails2.sln;
Thumbnails.sln

code Listings
add three metadata properties

to the ‘‘thumbnailmaker’’
queue (Listing 8–8), 215

clearing all messages from a
queue (Listing 8–21), 221

create a queue and add three
simple string messages to
it (Listing 8–10), 216

create a queue named
‘‘thumbnailmaker’’
(Listing 8–4), 213

delete a queue named
‘‘thumbnailmaker’’
(Listing 8–6), 214

delete a single message with
the specified PopReceipt
value in a designated
queue (Listing 8–19), 220

HTTP PUT request and
response messages to
create a queue named
‘‘thumbnailmaker’’
(Listing 8–3), 212–213

inspect a single message in a
designated queue
(Listing 8–17), 219–220

list queues in the storage
account specified in the
ServiceConfiguration.cscfg
file (Listing 8–2), 212

retrieve a single message from
a designated queue
(Listing 8–14), 218

retrieve and process a single
message as it arrives in
the queue (Listing 8–15),
218–219

retrieve the approximate
number of messages in a
specified queue as an
integer (Listing 8–12),
217

creating, 210–221
with specified storage account,

212–213
defined, 27, 63
diagram of, 210
HTTP request and response

messages
to add a simple string message

to the ‘‘thumbnailmaker’’
queue (Listing 8–9), 216

to add three metadata
properties to the
‘‘thumbnailmaker’’ queue,
214

to clear all messages from the
queue (Listing 8–20), 220

to delete a queue named
‘‘thumbnailmaker’’
(Listing 8–5), 213–214

to delete a single message
having the designated
PopReceipt value
(Listing 8–18), 220

to inspect, rather than process,
a single message
(Listing 8–16), 219

for a list of the oakleaf3
account’s queues
(Listing 8–1), 211–212

to retrieve a single message
from the selected queue
(Listing 8–13), 217–218

to retrieve the approximate
number of messages in a
queue (Listing 8–11),
216–217

HTTP/HTTPS protocols and, 209
HTTP/REST

at message level, 215–221
at queue level, 212–215

listing of, 211–212
messages in

adding, 215, 216
clear, 215, 220–221
delete, 215, 220
peek at, 215, 219
retrieve approximate number,

215, 216–217
retrieve single message, 215,

217–219
messaging with, 209–235
processing, 210–221
purpose of, 209, 234
queue-related classes/event

handlers, 210, 211
REST API, 25, 33, 48, 209, 234
thumbnailmaker. See

thumbnailmaker queue
QueueStorage, 210
QueueStorageEndpoint, 29
QueueStorageRest, 210
QueueSubscriber, 306
QuickBase RDBMS, 10

R
Rackspace Hosting, 11, 18
Rao, Leena, xxi
RC2CryptoServiceProvider, 135
RDBMSs (relational database

management systems), 12.
See also DaaS; RDBMSs

ACID and, 29, 30
DaaS and, 12
QuickBase RDBMS, 10
scaling up and, 29

Recognized Token Issuer,
260–261

Red Queen principle, 15, 16
RedDog project, 5
regulatory compliance. See

compliance
relational database management

systems. See RDBMSs
Relying Parties/Access Control

solutions/Service
Requesters interactions, 259

Relying Party (RP), 247, 250,
258, 264–266

Relying Party Security Token
Service (RP/STS), 258

Remote Procedure Call (RPC),
229

Replication system (FC), 57, 58
Reporting Services (SQL

Reporting Services), 5, 6,
20, 40

Representational State Transfer
APIs. See REST APIs

reputation/fate sharing, 116
request headers for the first 12

entities from the OakLeaf3
table (Listing 5–12), 141

325

response headers

response headers
to establish an SSL connection

for Tables
(Listing 5–6/Listing 5–7),
130–131, 134–135

establishing TLS connection for
WebRole with certificate
(Listing 5–3), 128–129

for the first of 12 encrypted
Entities from the OakLeaf3
table (Listing 5–13),
141–142

and payload from adding an
encrypted entity to the
OakLeaf3 table
(Listing 5–10), 138–139

res.Redirect(), 186
REST (Representational State

Transfer) APIs, 67–72. See
also HTTP/REST; LINQ to
REST

blobs and, 25, 33, 48
C# wrappers for, 70–72
LINQ to REST, 68, 85, 88, 89,

111, 205
queues and, 25, 33, 48, 209,

234
tables and, 25

RestBlobStorage.cd file, 98
RestBlobStorage.cs, 72
RestHelpers.cs, 72
RestQueue.cs, 72
retrieving and storing blobs,

94–111
RetryProperties class diagram, 97
RFC 2046, 95, 96, 129
RFC 2988, 136
RFC 4346, 129
RightScale, 12, 51. See also

Amazon Web Services
RijndaelManaged, 135–136
risk minimization (moving to

Azure Platform), 115–150.
See also compliance;
obstacles

bypassing cloud computing
obstacles, 116–127

encrypting PII in Storage
Services, 135–147

HTTPS with TLS, 127–135
Robinson, David, 41
Robison, Shane, 13
role instances, health of, 53–54
RoleEntryPoint, 36
RoleException, 36
RoleManager, 36
roles, ASP.NET role management

features and, 152–153
RoleStatus, 36

Root Certificate Authorities, 127,
128, 131, 132, 133,
134–135

RouterPolicy instance, 309–311
RowKey values, 30, 190, 208.

See also PartitionKey values
NumericType.MaxValue -

NumericPropertyValue
calculations, 189, 198, 208

unique, 188, 192, 208
RP. See Relying Party
RPC (Remote Procedure Call),

229
RP/STS (Relying Party Security

Token Service), 258
Ruby, 21, 39, 51, 67, 175, 243,

275
rundevstore.cmd, 24, 25, 27, 29

S
S3 (Simple Storage Service), 12,

18. See also Amazon Web
Services

AMIs/EBS snapshot backups
and, 12

availability, 117
egress/ingress costs, 227
FaaS and, 13
IaaS and, xxi
outages, 117
Rackspace Hosting and, 11
start of, xxi
uptime, 117

SaaS (Software as a Service),
12

Application as a Service, 12
ASPs and, 10
in five-layer cloud computing

model, 14
Salesforce.com, xxi

SADB (SQL Azure Database--
formerly SSDS and SDS), xxii.
See also SQL Services

CTP, xxii, xxv, xxvi, 48
features, 41
online chapters

‘‘Exploiting SQL Azure
Database’s Relational
Features,’’ xxii, xxv, xxvi,
41, 48, 63

‘‘Managing SQL Azure
Database Accounts,
Databases, and Data
Hubs,’’ xxii, xxv, xxvi, 41,
48, 63

SDS and, xxv, 48, 63, 147, 187
SQL Server 2008 and, 48, 187
SSDS and, xxv, 40, 41, 42,

56

tables v ., 187
v1 private CTP account, 42

Safe Harbor regulations, EU,
149

Salesforce.com
Apex ‘‘on-demand’’ programming

language, 14
Cloud Application Layer, 14
CRM capabilities, xxi, 10
firewalls and, 54
governance issues and, 16
PaaS, 14–15
SaaS, xxi, 12, 14
S+S, 12

SAML (Security Assertion Markup
Language) tokens, 239, 244,
271

‘‘Sample Code for Batch
Transactions in Windows
Azure Tables’’ blog post,
194

‘‘Sample Code for New Windows
Azure Blob Features’’ blog
post, 110

SampleWebCloudService project,
28–29, 30, 37, 70. See also
AzureTableTestHar-
nessSSL.sln
project

SAQ (PCI Self-Assessment
Questionnaire), 125–126

Sarbanes-Oxley Act (SOX), 18,
119, 120–121, 147, 148,
149, 150

SAS 70 (Statement of Auditing
Standards) attestations,
xxiii, 55, 148, 149, 150

SB. See Service Bus
SB 1386. See California Senate

Bill 1386
SBQs. See Service Bus Queues
SBRs. See Service Bus Routers
SBS. See Service Bus
SByte, 167
scalability

high, 63
PartitionKey values and, 164,

187–190, 208
/performance, Azure tables and,

187–190, 208
‘‘Scalability and Cost Issues with

Windows Azure Web and
WorkerRole Projects - Live
Demo’’ OakLeaf blog post,
229

scaling Azure Table and Blob
storage. See blobs; tables

scaling out, 29
scaling quickly, 116
scaling up, 29
Schmidt, Eric, 3, 4

326

In
de

xSite Data Protection (SDP) program

scopes
autogenerated,

WSHttpRelayEchoSample.
sln and, 290–292

defined, 260, 261
SDK (Azure Software

Development Kit), 5, 6, 19.
See also WLID Web
Authentication SDK 1.2

AspProvidersDemo.sln, 25, 153,
165

Azure Platform diagram and, 6,
20

DF and, 23, 48
download, 24
DS and, 23, 48
installing, 24
sample applications, 24–25

SDP (Site Data Protection)
program, 16

SDS (SQL Data Services), xxv, 5,
41, 48, 63, 147, 187. See
also SADB

Search Engine Strategies
Conference, 3

SEC (Securities and Exchange
Commission), 121

Secondary Access Key, 66
Second-Level Address Translation

(SLAT), 60
Secure Sockets Layer. See SSL
Securities and Exchange

Commission (SEC), 121
security. See also ASP.NET

Membership Services;
obstacles; risk minimization;
SSL; TLS; Windows Live ID
authentication

Azure OS, 54–57
cloud computing, 16–18, 55, 61,

116
DPAPI, 136, 273
non-proprietary security features,

17, 18
Security Assertion Markup

Language (SAML) tokens,
239, 244, 271

Security Token Service (STS),
239, 243, 258, 261, 264,
271. See also Access Control
Services

security-intensive agencies, cloud
computing and, 119

SecurityMode enum, 293
Self-Assessment Questionnaire

(PCI SAQ), 125–126
self-issued CardSpace card

(WSHttpRelayEcho
Sample.sln), 288–290

self-signed certificate, 131–132
Senate Bill 1386. See California

Senate Bill 1386

Sender, 300, 301
server virtualization, 49, 58–60
Service Bus (.NET Service Bus,

SB), 39–40, 48, 273–294.
See also Access Control
Services; EchoSample
solution; Queue Services;
Workflow Services

in Azure Platform diagram, 6, 20
BizTalk Services and, 39, 273
defined, 294
EchoSample solution, 276–285,

294
ESB and, 39, 273–274, 294
features, 273–274
load balancing and, 39
messaging fabric, 275–276
.NET Services SDK and,

275–276
.NET Services solution and,

274–275
online information, 40
purpose of, 39
WCF and, 39, 273
WSHttpRelayEchoSample.sln,

285–294
Service Bus Queues (SBQs), 295,

296–300, 312
creating (Listings 11–1 to 11–4),

296–300
HTTPQueueSample solution and,

300–306, 309
QueueManagementClient class

and, 296–300
SBRs and, 307

Service Bus Routers (SBRs), 295,
306–311, 312

component relationships, 307
HttpRouter.sln solution and,

306–311
RouterPolicy instance and,

309–311
SBQs and, 307

service deployments, 26, 49, 60
Service Level Agreements. See

SLAs
Service Model, 51, 52
Service Register, 258
Service Requesters/Access

Control solutions/Relying
Parties interactions, 259

Service Training Kit, Azure, 243
ServiceConfiguration.cscfg file,

27
AspProviderDemo.sln

Listing 6–5, 160–161
service configuration settings

for remote storage
endpoints (Listing 6–7),
169

settings for secure HTTPS
transport of Azure, Tables
and Blobs, 169

code to list queues in the storage
account specified in the
ServiceConfiguration.cscfg
file (Listing 8–2), 212

ConfigurationSettings section, 97
default content in, 27–29
editing, 46
Fiddler2 and, 69
http changed to https, 130, 150
<Instances count=‘‘n’’>

element and, 53
Listing 2–2, 28
multitenancy and, 57
Primary Access Key/Secondary

Access Key values and, 66
ProjectName.cspkg and, 44, 45
for SampleWebCloudService Web

application, 28
<Setting> elements in, 160
Thumbnails_WebRole and

Thumbnails_WorkerRole
projects (Listing 8–22), 222

ServiceDefinition.csdef file,
27–28

ServiceDefinition.csdef file
(Listing 2–1), 27–28

ServiceHostingSDKSamples, 29,
30

ServiceName – Production
Deployment – Azure Blob
Test Harness – Service
Tuning page, 103

Service-Oriented Architecture
(SOA), 10, 11, 14, 18

SetProperties(), 212
<Setting> elements, 160
shared secret key, 135
shared server hosting, 10
SharePoint Services, 6, 10
Signature (Information Card

term), 259
Signed Security Token, 258
Silverlight, 141, 274
Silverlight Mesh-Enabled Web

Application, 35
Silverlight UI, 50, 60
SilverlightStreamMedia, 178
SimpleDB. See also Amazon Web

Services
DBaaS and, 12
EAV tables and, 12, 29, 111,

187
FaaS and, 13

simulation/visualization, 119
Site Data Protection (SDP)

program, 16

327

SkyDrive (Microsoft Live)

SkyDrive (Microsoft Live), 12, 33,
42, 94, 95, 97, 99, 104, 105

SLAs (Service Level Agreements)
for Azure, 55
business interruption risk and,

149
CaaS and, 12
MaaS and, 12
maximizing data availability and,

117
SLAT (Second-Level Address

Translation), 60
Slicehost, 11
smartphones, 10
Smith, Erick, 50, 51
SmugMug, 11
SOA (Service-Oriented

Architecture), 10, 11, 14, 18
SOAP 1.2 messaging, 285
SOAP envelopes, 306, 312
SOAP message security, 293
SOAP protocol, 21, 39, 40, 273,

274, 275
SOAP response envelope, 280,

281
SOAP WS-* identity/claims URIs,

248
SOAP-based web services, 12,

54, 240
Soderlund, H. W., 141
‘‘Software + Services for

Architects’’ webcast, 56
Software as a Service. See SaaS
Software Development Kit.

See.NET Services SDK; SDK;
WLID Web Authentication
SDK 1.2

Software Kernel, 14, 15
software licensing, 116
Software plus Services (S+S), 12
solid state disks (SSDs), 7
Solution Explorer, xxii, 35, 36,

153, 266, 282, 292, 301
solutions, 294. See also specific

solutions
source code/online chapters, xxii,

xxv, xxvi, 41, 48, 63
South Africa Report on Corporate

Governance, 120
SOX. See Sarbanes-Oxley Act
SPARC processors, 8
specialty ASPs, 10
SQL Analysis Services (SSAS), 5,

6, 20
SQL Azure. See SQL Services
SQL Azure Database. See SADB
SQL Data Services (SDS), xxv, 5,

41, 48, 63, 147, 187. See
also SADB

SQL Integration Services (SSIS),
40, 80

SQL Reporting Services (SSRS),
5, 6, 20

SQL Server 2005
column-based server encryption,

146–147, 150
Express/Standard editions, 41
Windows Server 2003 R2 and,

13, 41
SQL Server 2008. See also SADB;

SQL Services
‘‘Database Encryption in SQL

Server 2008 Enterprise
Edition’’ technical article,
147

SADB and, 48, 187
‘‘SQL Server 2008: Transparent

data encryption feature - a
quick overview’’ blog post,
147

‘‘SQL Server 2008 TDE:
Encryption You Can Use!’’
blog post, 147

SQL Services and, 40
TDE, 147, 150

SQL Server Data Services (SSDS),
xxv, 40, 41, 42, 56. See also
SADB

SQL Server in the Cloud, xxv, 5,
41, 48. See also SQL Data
Services

SQL Server Management Studio,
30, 31, 157

SQL Services (SQL Azure), 5, 6.
See also SADB

Analysis Services, 5, 6, 20, 40
in Azure Platform diagram, 6, 20
Integration Services, 40, 80
Reporting Services, 5, 6, 20, 40
SQL Azure Database. See SADB

SQO. See LINQ Standard Query
Operators

S+S (Software plus Services), 12
SSAS (SQL Analysis Services), 5,

6, 20, 40
SSDS (SQL Server Data Services),

xxv, 40, 41, 42, 56. See also
SADB

SSDs (solid state disks), 7
SSIS (SQL Integration Services),

40, 80
SSL (Secure Sockets Layer). See

also TLS
‘‘Enabling SSL Connections on

Windows Azure’’
whitepaper, 131

Enabling SSL for secure HTTP
Blob, Table, and Queue
transport (Listing 5–4), 130

Request headers to establish an
SSL connection for Tables
(Listing 5–5), 130

response headers to establish
an SSL connection for
Tables (Listing 5–6/
Listing 5–7), 130–131,
134–135

‘‘Tip/Trick: Enabling SSL on IIS
7.0 Using Self-Signed
Certificates’’ blog post, 131

transmission encryption, for Web
Roles, 127–135

TSL v ., 129
SSL page, 44
SSRS (SQL Reporting Services),

5, 6, 20, 40
Staging Deployment page, 45,

47
Standard Query Operators. See

LINQ Standard Query
Operators

standardizing Information Card
terminology, 257–259

Start(), 224, 225
Statement of Auditing Standards.

See SAS 70 attestations
Stone, Brad, 9
Storage Accounts (Azure Storage

Accounts), 21
creating, 64–67
Hosted Service tokens and,

64–67, 95
Storage Services (Azure Storage

Services), 5, 6, 13. See also
blobs; Development Storage;
queues; tables

in Azure Platform diagram, 6,
20

encryption of PII in, 135–147
purpose of, 48
REST APIs, 67–72. See also

REST APIs
role of, 63, 111

StorageAccountInfo.cs, 72
StorageClient class library, 37,

80, 97, 111, 142, 170, 171,
210, 211

StorageClient sample project, 25,
37

storing and retrieving blobs,
94–111

Stratus, 5
String (data type), 30, 79,

167
structured data. See tables
STS (Security Token Service),

239, 243, 258, 261, 264,
271. See also Access Control
Services

Subject, 258
submitButton_Click() event

handler, 224
Summary page, 43

328

In
de

xTLS (Transport Layer Security)

Sun Microsystems. See also
Oracle

Azure v ., xxi
‘‘The Network is the Computer’’

motto, 8

T
TaaS (Tools as a Service), 13
Table Services (Azure Table

Services), 29–32, 72–94.
See also OakLeaf Systems
Azure Table Services Sample
Project

in Azure Platform diagram, 6, 20
table storage, 72–94

TableRetryWrapperException, 73,
74

tables (Azure Tables), 27, 63,
72–94, 111. See also
AzureTableTestHar-
nessSSL.sln project; EAV
tables; OakLeaf3 table; SADB

creating
with code, 72–79
with HTTP POST method,

79–80
Listings (4–1 to 4–4), 75–80

defined, 63, 111
entities, 80–94

adding with code, 81–82
adding with HTTP POST, 83–85
associated, 190–193
deleting, 93–94
primary key values for,

187–190
querying, 85–90
as table unit, 69
updating, 90–92

flexible properties feature, 188,
191, 208

locality and, 188, 208
partition strategy, 187–190, 208
performance/scalability

optimization, 187–208
REST API and, 25
SADB v ., 187
scalability/performance

optimization, 187–208
TableStorage class, 73, 74
TableStorageConstants, 73
TableStorage.cs, 72
TableStorageDataServiceContext,

73
TableStorageDataServiceQuery,

73
TableStorageEndpoint, 29
TableStorageEntity

class, 73
class diagram, 74

instance, encryption/decryption
in, 142–145

TableStorageHelpers, 73
TableStorageMembershipProvider

class, 161–162, 163
TableStorageProfileProvider class,

164–165, 167
TableStorageRoleProvider class,

162–164, 165
TableStorageSessionProvider

class, 165–169
TableStorageTable class, 73
Take(n) Standard Query Operator

(LINQ), 189, 208
TDE. See Transparent Data

Encryption
templates (Azure Application

Templates for Visual Studio
2008), 24, 35–37

tenants. See guest VMs;
multitenancy

Thibodeau, Patrick, 118
thin clients, 7–8
thumbnailmaker queue, 213

HTTP PUT request and response
messages to create a
queue named
‘‘thumbnailmaker’’
(Listing 8–3), 212–213

HTTP request and response
messages

to add a simple string message
to the ‘‘thumbnailmaker’’
queue (Listing 8–9), 216

to add three metadata
properties to the
‘‘thumbnailmaker’’ queue,
214

to delete a queue named
‘‘thumbnailmaker’’
(Listing 8–5), 213–214

Thumbnails2.sln (modified
project), 221

AJAX modifications and, 221,
222

flow diagram (for
Thumbnails_WebRole and
Thumbnails_WorkerRole
projects), 231, 232

gvBlobs GridView added to,
231–233

Marx’s recommendations for,
229–230

thumbnail deletion and,
231–234

Thumbnails.sln (original project),
25, 235

added thumbnail images and,
221

bandwidth consumption and, 235
enhancing, 221–234

flow diagram (for
Thumbnails_WebRole and
Thumbnails_WorkerRole
projects), 222, 223, 231,
232

Photo Gallery Azure Queue
Services Test Harness, xxv,
34

purpose of, 25, 221, 235
real-world tests of, 235
thumbnailmaker queue. See

thumbnailmaker queue
Thumbnails_WebRole and

Thumbnails_WorkerRole
projects

analyzing network traffic
implications of polling for
blob updates, 225–229

code Listings
default ServiceConfigure.cscfg

document (Listing 8–22),
222

HTTP request and partial
response messages for
adding a thumbnail image
with the GridView’s
ViewState turned off
(Listing 8–25), 227–229

HTTP request and response
messages generated by
WorkerRole polling
(Listing 8–26,
Listing 8–27), 230,
233–234

HTTP request message with 10
thumbnail images with
partial ViewState
contents(Listing 8–23,
Listing 8–24), 225, 226

event handlers/methods of,
224–225

flow diagram
Thumbnails2.sln (modified

project), 231, 232
Thumbnails.sln (original

project), 222, 223, 231,
232

methods/event handlers of,
224–225

WebRoles/WorkerRoles
interactions, 222–225

TimeSpan, 167
TimeStamp, 30, 180
‘‘Tip/Trick: Enabling SSL on IIS

7.0 Using Self-Signed
Certificates’’ blog post, 131

TLS (Transport Layer Security)
enabling TLS for Secure HTTP

WebRole transport
(Listing 5–1), 127

HTTPS with, 127–135, 150

329

TLS (Transport Layer Security) (continued)

TLS (Transport Layer Security)
(continued)

request headers to establish TLS
connection for WebRole
(Listing 5–2), 128

response headers establishing
TLS connection for WebRole
with certificate
(Listing 5–3), 128–129

SSL v ., 129
Tokens page, 21, 23, 64, 65
Tools as a Service (TaaS),

13
‘‘Top 10 Obstacles for Growth of

Cloud Computing’’, 55, 116.
See also obstacles

‘‘Toward a Unified Ontology of
Cloud Computing’’ research
paper, 13, 14

transparency, 55, 120
Transparent Data Encryption

(TDE), 147, 150
Transport Layer Security. See TLS
TransportClientCredentialType

enum, 287
TripleDESCryptoServiceProvider,

136
Trust Identity, 258
Trusted Root Certificate

Authorities List,
132–134

T-SQL, 41, 48, 146
$200 Laptops Break a Business

Model’’ story, 9

U
UCI (Unified Cloud Interface)

project, 17
UInt16, 167
UInt32, 167
UInt64, 167
‘‘Under the Hood: Inside the Cloud

Computing Hosting
Environment,’’ 50–51

Unified Cloud Interface (UCI)
project, 17

unique entity ID, 187, 188
unique RowKey values, 188, 192,

208
Unsigned Security Token,

258
unstructured data. See blobs
Upgrade Domains, 52, 54, 60
uploaded request messages. See

data ingress costs
Urquhart, James, 13
user names, case sensitive, 153
utility computing, 12, 14

V
v1 private CTP account, SADB, 42
Vance, Ashlee, 9
Verizon, xxi
vertical-market ASPs, 10
View Open Client, VMware, 8
virtual machines (VMs), 14, 51,

53, 58
gang-schedule, 116
guest, 49, 50, 53, 58, 59
host, 49, 50, 53, 58

Virtual Private Server (VPS), 11,
15

virtualization process (server
virtualization), 49, 58–60

virtualization service client (VSC),
58, 59

virtualization service provider
(VSP), 58, 59

virtualized runtime application
platform, 13

Visa’s Cardholder Information
Security Program, 16

Vista (Windows Vista)
Azure Log Viewer and, 103, 104
SP1, 6, 20
SP2, 24

Visual Studio (Microsoft Visual
Studio 2008)

2010, xxii, xxiii, 5, 19, 295
Azure Application Templates for,

24, 35–37
Azure tools for, xxiv, 5, 6, 22,

24, 27, 35, 51
MakeCert.exe, 131, 134, 135,

150
New Project dialog, 35, 178
Windows Live Tools for,

177–181
WorkFlow Designer, 40, 311

visualization/simulation, 119
VMBus, 50, 58, 59
VMs. See virtual machines
VMware View Open Client, 8
Vo, Hoi, 60
Volodarsky, Michael, 169
VPS (Virtual Private Server), 11,

15
VSC (virtualization service client),

58, 59
VSP (virtualization service

provider), 58, 59

W
WCF (Windows Communication

Framework) services, 20
EchoService, 266–270
HTTP Activation, 24

Service Bus and, 39, 273
SOAP clients and, 240
web services and, 240
WIF and, 240

Web and Worker Service, 6, 13,
20, 24, 38

Web Cloud Services, 24, 31, 33.
See also Cloud Services

in Azure Platform diagram, 6, 20
client wrapper class libraries

and, 37
web hosting services, 10–11
Web TV, 8–9
WebAuth sample web site, 176,

177, 182–183, 186
webauth_handler.aspx page, 177,

181, 182, 183–184
web.config file

(AspProviderDemo.sln)
Azure-specific membership

elements in, 158–161
membership section

(Listing 6–1), 158
optional data services/default

settings (Listing 6–3/6–4),
160

role manager/profile/session
state sections (Listing 6–2),
159

WebRoles, xxii, xxiv, 50. See also
Thumbnails_WebRole and
Thumbnails_WorkerRole
projects

SSL transmission encryption for,
127–135

/WorkerRoles interactions,
222–225

WFS. See Workflow Services
WHERE clause, 146
WIF. See Windows Identity

Foundation
Windows Azure. See Azure
Windows Azure operating system.

See Azure OS
Windows Azure Platform. See

Azure Platform
Windows Azure Services Platform.

See Azure Platform
‘‘Windows Azure Walkthrough:

Simple Table Storage’’ blog
post, 72

Windows CardSpace information
card. See CardSpace
information card

Windows CE, 9
Windows Communication

Framework services. See
WCF services

‘‘Windows Data Protection’’
whitepaper, 136

330

In
de

xZero-Administration Windows (ZAW)

Windows Identity Foundation
(WIF, formerly Geneva
Framework), 239, 243, 244,
271, 273, 274

Geneva Framework and, 239,
240, 243, 244, 273

WCF and, 240
Windows Live ID (WLID)

authentication, 151,
175–186

IDLoginStatus control,
178–181

IDLoginView control,
178, 181

implementing, for existing web
site, 181–182

LiveIDSampleCloudService.sln
project and, 177,
181–186

Web.config settings for WLID’s
default Application ID and
SecretKey settings for
authenticating web sites
(Listing 6–11), 176–177

Windows Live Tools for Visual
Studio, 177–181

WLID Web Authentication SDK
1.2, 175–177, 186

Windows PowerShell, 24, 25, 243
Windows Vista. See Vista
WLID authentication. See

Windows Live ID
authentication

WLID Web Authentication SDK
1.2, 175–177, 186

Worker Cloud Services, 6, 20, 34,
63, 72

WorkerRoles, 50
See also Thumbnails_WebRole

and Thumbnails_Worker
Role projects

/WebRoles interactions,
222–225

WorkFlow Designer, Visual Studio,
40, 311

Workflow Services (WFS)
in Azure Platform diagram, 6,

20
defined, 311
features, 40, 295
as high-scale host, 40,

311
.NET 4 and, xxii, xxiii, xxv, 40,

271, 295
.NET Services and, xxii, 40, 48,

240, 295
online information, 40

wrapper classes, 71
Wrox P2P, xxvii
WSHttpRelayEchoSample.sln,

285–294. See also
EchoSample solution

App.config file (Listing 10–8),
286–287

App.config file binding details
(Listing 10–9), 293–294

autogenerated scope for,
290–292

EchoSample solution v .,
286–287

self-issued CardSpace card and,
288

Wyse Technology, 8

X
X509, 132, 135
X509Certificate, 287
XaaS, 13. See also Everything as

a Service
XML

blobs and, 32
comments, 28
document, 162
element names, 72
log data, 103, 105
protocol, 21
Request Body, 34
SAML and, 239
Save to XML button, 104

XPathQueryHelper static class,
98

Y
Yong, Joe, 147
Youseff, Lamina, 13, 14, 15

Z
ZAW (Zero-Administration

Windows), 7, 8
Zero-Administration Windows

(ZAW), 7, 8

331

Take your library
wherever you go.
Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP.NET
• C#/C++
• Database
• General
• Java
• Mac
• Microsoft Office

• .NET
• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

wrox_24x7_BOB_ad_final.indd 1wrox_24x7_BOB_ad_final.indd 1 9/8/2007 4:26:08 PM9/8/2007 4:26:08 PM

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Cloud
Computing
with the Windows® Azure™ Platform

Roger Jennings $39.99 USA
 $47.99 CAN

Cloud-based applications make it easier to share data, and the Azure
Platform moves processing and storage from individual corporate
servers and websites to large Microsoft data centers. With this book,
Roger Jennings offers you an overview of cloud computing and
shares his approach for hands-on programming of Windows Azure
Storage Services (tables, blobs, and queues) and web, worker, and
.NET Services applications. You’ll learn how to program with Azure
components, while online chapters cover new SQL Azure Database
and Workflow features.

• Addresses various issues you may encounter when moving from
on-premise to cloud-based applications (such as security, privacy,
regulatory compliance, and backup and recovery)

• Shows how to adapt ASP.NET authentication and role management
to Azure web roles

• Reveals the benefits of offloading computing services to one or
more WorkerRoles when moving to Windows Azure

• Teaches you how to choose the optimum combination of
PartitionKey and RowKey values for sharding Azure tables

• Discusses ways to improve the scalability and performance of
Azure tables

Roger Jennings is the principal consultant of OakLeaf Systems and the author of
more than 30 books, including Professional ADO.NET 3.5 with LINQ and the Entity
Framework and a contributing editor to Visual Studio Magazine.

Wrox guides are crafted to make learning programming languages and
technologies easier than you think. Written by programmers for programmers,
they provide a structured, tutorial format that will guide you through all the
techniques involved.

Programming / General

Leverage the
capabilities of Azure

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

Jennings

Cloud Com
puting w

ith the W
indow

s
® A

zure
™ Platform

	Cloud Computing with the Windows Azure Platform
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	Conventions
	Source Code and Online Chapters
	Errata
	P2p.wrox.com

	Part I: Introducing the Windows Azure Platform
	Chapter 1: Surveying the Role of Cloud Computing
	Why Migrate Applications and Services to the Cloud?
	Cloud Computing’s Ancestry
	Cloud Computing and Everything as a Service
	Cloud Computing Ontologies
	Cloud Computing Concerns
	Summary

	Chapter 2: Understanding Windows Azure Platform Architecture
	The Windows Azure Developer Portal
	Creating and Running Projects in the Azure Development Platform
	Using Azure Application Templates for Visual Studio 2008
	Taking Advantage of Auxiliary Cloud Services
	Deploying Applications and Services to the Azure Cloud
	Summary

	Chapter 3: Analyzing the Windows Azure Operating System
	A Quick Tour of the Windows Azure OS
	The Lifecycle of a Windows Azure Service
	Securing and Isolating Services and Data
	Assuring Fabric Controller Availability
	Virtualizing Windows Servers for Azure
	Summary

	Chapter 4: Scaling Azure Table and Blob Storage
	Creating Storage Accounts
	Using or Wrapping the Azure Storage Services’ REST APIs
	Understanding Azure Table Storage
	Storing and Retrieving Blobs
	Summary

	Part II: Taking Advantage of Cloud Services in the Enterprise
	Chapter 5: Minimizing Risk When Moving to Azure Cloud Services
	Bypassing Barriers to Cloud Computing
	Implementing Secure Sockets Layer Transmission Encryption for Web Roles
	Encrypting Personal Information in Azure Storage Services
	Auditing Conformance to Regulatory and Industry Standards
	Summary

	Chapter 6: Authenticating and Authorizing Service Users
	Taking Advantage of ASP.NET Membership Services
	Adapting ASP.NET Authentication and Role Management to Windows Azure Web Roles
	Analyzing the AspProviders Library’s Classes
	Moving the AspProvidersDemo’s Data Source to the Cloud
	Integrating Membership Services with an Azure Service
	Authenticating Users with Windows Live ID
	Summary

	Chapter 7: Optimizing the Scalability and Performance of Azure Tables
	Assigning Primary Key Values to Entities
	Handling Associated Entities
	Taking Advantage of Entity Group Transactions
	Uploading Table Data
	Displaying Data from Heterogeneous Tables in Grids
	Summary

	Chapter 8: Messaging with Azure Queues
	Creating and Processing Azure Queues and Messages
	Enhancing the Thumbnails.sln Sample Solution
	Summary

	Part III: Tackling Advanced Azure Services Techniques
	Chapter 9: Authenticating Users with .NET Access Control Services
	Creating a .NET Services Solution
	Installing the .NET Services SDK, and Other Tools
	Creating CardSpace Credentials at FederatedIdentity.net
	Using a Managed CardSpace Credential with ACS
	Summary

	Chapter 10: Interconnecting Services with the .NET Service Bus
	Creating a .NET Services Solution and Installing Prerequisites
	Relaying Messages with SB
	Analyzing the .NET Services SDK’s EchoSample Solution
	Using the Configuration File to Specify WSHttpRelayBinding
	Summary

	Chapter 11: Exploring .NET Service Bus Queues and Routers
	Persisting Messages in Service Bus Queues
	Delivering Messages with Service Bus Routers
	Summary

	Index

